Advertisement

General Relativity and Gravitation

, Volume 25, Issue 4, pp 399–407 | Cite as

The fragility and rigidity of cosmological theories

  • James E. Lidsey
Research Articles

Abstract

The concepts of fragility and rigidity in theories containing a minimally coupled, self-interacting scalar field are introduced and defined for an arbitrary space-time dimension,D, by using the field as the dynamical variable. It is proved that inflation is rigid and the case of an exponential self-interaction is studied. The fragility of higher-order, scalar-tensor and Kaluza-Klein gravity theories is investigated by using their conformal equivalence to general relativity plus a scalar field. Whilst most higher-order theories are rigid, the conditions for Kaluza-Klein theories to become fragile depend strongly onD.

Keywords

General Relativity Scalar Field Differential Geometry Dynamical Variable Gravity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellis, G. F. R. (1991). InGravitation, A. A. Coley, ed. (World Scientific, Singapore). Ellis, G. F. R., and Madsen, M. S. (1991).Class. Quant. Grav. 8, 667Google Scholar
  2. 2.
    Ellis, G. F. R., Skea, J. E. F., and Tavakol, R. K. (1991).Europhys. Lett. 16, 767Google Scholar
  3. 3.
    Salopek, D. S., and Bond, J. R. (1990).Phys. Rev. D 42, 3936; (1991).Phys. Rev. D 43, 1005; Muslimov, A. G. (1990).Class. Quant. Grav. 7, 231; Lidsey, J. E. (1991).Class. Quant. Grav. 8, 923; (1991).Phys. Lett. B273, 42; (1992).Class. Quant. Grav. 9, 1239.Google Scholar
  4. 4.
    Halliwell, J. J. (1987).Phys. Lett. B 185, 241; Burd, A. B., and Barrow, J. D. (1988).Nucl. Phys. B 308, 929.Google Scholar
  5. 5.
    Liddle, A. R. (1989).Phys. Lett. B 220, 502.Google Scholar
  6. 6.
    Maeda, K. (1989).Phys. Rev. D 39, 3159; Barrow, J. D., and Cotsakis, S. (1988).Phys. Lett. B214, 515.Google Scholar
  7. 7.
    Holman, R., Kolb, E. W., Vadas, S. L., and Wang, Y. (1991).Phys. Rev. D 43, 995.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • James E. Lidsey
    • 1
  1. 1.Theoretical Astronomy Unit, School of Mathematical SciencesQueen Mary and WestfieldLondonUK

Personalised recommendations