General Relativity and Gravitation

, Volume 24, Issue 10, pp 1069–1081 | Cite as

The Oppenheimer-Snyder space-time with a cosmological constant

  • Ken-ichi Nakao
Research Articles


We investigate the Oppenheimer-Snyder space-time with a positive cosmological constant A. The interior of the dust sphere is described by the closed Friedmann-Robertson-Walker space-time while the exterior is the Schwarzschild-de Sitter space-time. Due to the cosmological constant A, when the gravitational massMo of the dust sphere is very large, there is no collapsing solution with the de Sitter-like asymptotic region which expands exponentially in the expanding universe frame. This fact suggests that the very large initial inhomogeneity does not necessarily lead to the failure of the cosmic no hair conjecture.


Dust Cosmological Constant Differential Geometry Asymptotic Region Positive Cosmological Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guth, A. H. (1981).Phys. Rev. D 23, 347; Sato, K. (1981).Mon. Not. R. Astr. Soc. 195, 467; Albrecht, A., and Steinhardt, P. J. (1982).Phys. Rev. Lett. 48, 1220; Linde, A. D. (1982).Phys. Lett. 108B, 389.Google Scholar
  2. 2.
    Gibbons, G. W., and Hawking, S. W. (1977).Phys. Rev. D 15, 2738; Hawking, S. W. and Moss, I. G. (1982). Phys. Lett.110B, 35; Maeda, K. (1990). InProceedings of the V Marcel Grossman Meeting, Perth, D. G. Blair, M. J. Buckingham, R. Ruffini, eds. (World Scientific, Singapore).Google Scholar
  3. 3.
    Carter, B. (1970).Commun. Math. Phys. 17, 1067;id., (1973). InBlack Holes C. DeWitt, B. S. DeWitt, eds. (Gordon and Breach, New York).Google Scholar
  4. 4.
    Sato, K., Sasaki, M., Kodama, H., and Maeda, K. (1981).Prog. Theor. Phys. 65 1443; Maeda, K., Sato, K., Sasaki, M., and Kodama, H. (1982).Phys. Lett. 108B, 98; Sato, K. (1987). InThe Large Scale Structure of the Universe (Proc. I. A. U. Symposium No. 130) (unpublished).Google Scholar
  5. 5.
    Kurki-Suonio, H., Centrella, J., Matzner, R. A., and Wilson, J. R. (1987).Phys. Rev. D 35, 435.Google Scholar
  6. 6.
    Holcomb, K. A., Park, S. J., and Vishniac, E. T. (1989).Phys. Rev. D 39, 1058.Google Scholar
  7. 7.
    Goldwirth, D. S., and Piran, T. (1989).Phys. Rev. D 40, 3269;id. (1990).Phys. Rev. Lett. 64, 2852.Google Scholar
  8. 8.
    Garfinkle, D., and Vuille, C. (1991).Gen. Rel. Grav. 23, 471.Google Scholar
  9. 9.
    Smarr, L., and York, J. W. (1978).Phys. Rev. D 17, 2529; Eardley, D. M., and Smarr, L. (1979).Phys. Rev. D 19, 2239.Google Scholar
  10. 10.
    Nakao, K., Maeda, K., Nakamura, T., and K. Oohara, K. (1991).Phys. Rev. D 44, 1326.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Ken-ichi Nakao
    • 1
  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations