General Relativity and Gravitation

, Volume 25, Issue 1, pp 1–6 | Cite as

How the Jones polynomial gives rise to physical states of quantum general relativity

  • Bernd Brügmann
  • Rodolfo Gambini
  • Jorge Pullin
Research Articles

Abstract

Solutions to both the diffeomorphism and the hamiltonian constraint of quantum gravity have been found in the loop representation, which is based on Ashtekar's new variables. While the diffeomorphism constraint is easily solved by considering loop functionals which are knot invariants, there remains the puzzle why several of the known knot invariants are also solutions to the hamiltonian constraint. We show how the Jones polynomial gives rise to an infinite set of solutions to all the constraints of quantum gravity thereby illuminating the structure of the space of solutions and suggesting the existance of a deep connection between quantum gravity and knot theory at a dynamical level.

References

  1. 1.
    Ashtekar, A. (1986).Phys. Rev. Lett. 57, 2244; (1987).Phys. Rev. D36, 1587.Google Scholar
  2. 2.
    Rovelli, C., 9 (1988).Phys. Rev. Lett. 61, 1155; (1990).Nucl Phys. B331, 80.Google Scholar
  3. 3.
    Di Bartolo, C., Gambini, R., Griego, J., Leal, L. (1991). Preprint IFFI (Montevideo).Google Scholar
  4. 4.
    Witten, E. (1989).Commun. Math. Phys. 121, 351.Google Scholar
  5. 5.
    Guadagnini, E., Martellini, M., Mintchev, M. (1990).Nucl. Phys. B 330, 575.Google Scholar
  6. 6.
    Gambini, R. (1991).Phys. Lett. B255, 180.Google Scholar
  7. 7.
    Brügmann, B., Pullin, J. (1991). Syracuse University Preprint SU-GP-91/8-5.Google Scholar
  8. 8.
    Brügmann, B., Pullin, J. (1991).Nucl. Phys. B 363, 221.Google Scholar
  9. 9.
    Brügmann, B., Gambini, R., Pullin, J. (1992).Phys. Rev. Lett. 68, 431; see also Gambini, R., Brügmann, B., Pullin, J. (1992). InProceedings of the XXth. DGM, S. Catto, A. Rocha, eds. (World Scientific, Singapore).Google Scholar
  10. 10.
    Jacobson, T., Smolin, L. (1988).Nucl. Phys. B 299, 295.Google Scholar
  11. 11.
    Gambini, R., Trias, A. (1980).Phys. Rev. D 22, 1380.Google Scholar
  12. 12.
    Ashtekar, A., Rovelli, C. (1991). “A Loop Representation of the Quantum Maxwell Field”, Syracuse University Preprint.Google Scholar
  13. 13.
    Ashtekar, A., Husain, V., Rovelli, C., Smolin, L. (1989).Class. Quant. Grav. 6, L185.Google Scholar
  14. 14.
    Gambini, R., Trias, A. (1981).Phys. Rev. D 23, 553; (1983).Phys. Rev. D27, 2935.Google Scholar
  15. 15.
    Brügmann, B. (1991).Phys. Rev. D.43, 566.Google Scholar
  16. 16.
    Farrerons, R. A. (1990). Ph. D. Thesis, Universitat Autònoma de Barcelona.Google Scholar
  17. 17.
    Kodama, H. (1990).Phys. Rev. D 42, 2548.Google Scholar
  18. 18.
    Brügmann, B., Gambini, R., Pullin, J. (1992) “Jones Polynomials for intersecting knots as physical states of quantum gravity”, Syracuse University Preprint SU-GP-92/1-1.Google Scholar
  19. 19.
    Calugareanu, G. (1959).Rev. Math. Pure Appl. (Bucharest) 4, 5.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Bernd Brügmann
    • 1
  • Rodolfo Gambini
    • 2
  • Jorge Pullin
    • 3
  1. 1.Physics DepartmentSyracuse UniversitySyracuseUSA
  2. 2.Facultad de CienciasInstituto de FisicaMontevideoUruguay
  3. 3.Department of PhysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations