General Relativity and Gravitation

, Volume 23, Issue 8, pp 877–895 | Cite as

Limitations on the Penrose process

  • F. Fayos Valles
  • E. Llanta Salleras
Research Articles


It is well known that the Penrose process (PP) is a way for extracting energy from a black hole (BH). An analytical and partially numerical study of the PP is presented for a particular case: an incoming particle, at rest at infinity, decays into two photons inside the ergoregion of a Kerr BH, assuming that all particles follow equatorial orbits. It is shown that this process cannot exist if the angular momentum of the BH is lower than a critical value. Considering the features of the non equatorial Kerr geodesics, it is conjectured that even when the incoming particle is not at rest at infinity and the trajectories are not equatorial, the critical value still holds. This lower limit on the angular momentum implies that not all the rotational energy of the BH could be extracted with the Penrose processes that we have considered.


Black Hole Angular Momentum Lower Limit Differential Geometry Rotational Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Penrose, R. (1969).Riv. Nuovo Cimento,1 252.Google Scholar
  2. 2.
    Penrose, R., and Floyd, R. M. (1971).Nature,229 171.Google Scholar
  3. 3.
    Christodoulou, D. (1970).Phys. Rev. Lett.,25 1596.Google Scholar
  4. 4.
    Hawking, S. (1971).Phys. Rev. Lett.,26 1344.Google Scholar
  5. 5.
    Wheeler, J. (1970). InStudy Week in Nuclei of Galaxies, D. J. K. O'Connell, ed. (North Holland, Amsterdam/Elsevier, New York).Google Scholar
  6. 6.
    Wald, R. (1974).Astrophys. J.,191 231; Kovetz, A., and Piran, T. (1975).Lett. Nuovo Cimento,12 39.Google Scholar
  7. 7.
    Bardeen, J. M., Press, W. H., and Teukolsky, S. A. (1972).Astrophys. J.,178 347.Google Scholar
  8. 8.
    Piran, T., and Shaham, J. (1977).Phys. Rev. D,16 1615.Google Scholar
  9. 9.
    Dhurandar, S. V., and Dadhich, N. (1984).Phys. Rev. D,29 2712.Google Scholar
  10. 10.
    Dhurandar, S. V., and Dadhich, N. (1984).Phys. Rev. D,30 1625.Google Scholar
  11. 11.
    Wagh, S. M., et al. (1985).Astrophys. J.,190 12.Google Scholar
  12. 12.
    Parthasarathy, S., et al. (1986).Astrophys. J.,307 126.Google Scholar
  13. 13.
    Wagh, S. M., and Dadhich, N. (1989).Phys. Rep.,183 137.Google Scholar
  14. 14.
    Kerr, R. P. (1963).Phys. Rev. Lett.,11 237.Google Scholar
  15. 15.
    Carter, B. (1968).Phys. Rev.,174 1559.Google Scholar
  16. 16.
    Carter, B. (1968).Comm. Math. Phys.,10 280.Google Scholar
  17. 17.
    de Felice, F. (1968).Nuovo Cimento,57B 351.Google Scholar
  18. 18.
    de Felice, F., and Calvani, M. (1972).Nuovo Cimento,10B 447.Google Scholar
  19. 19.
    Stewart, J., and Walker, M. (1973).Black Holes: the Outside Story, (Springer Tracts in Modern Physics 69, Springer-Verlag, Berlin).Google Scholar
  20. 20.
    Calvani, M., and de Felice, F. (1978).Gen. Rel. Grav.,9 889.Google Scholar
  21. 21.
    Chandrasekhar, S. (1983).The Mathematical Theory of Black Holes (Oxford University Press, Oxford).Google Scholar
  22. 22.
    Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • F. Fayos Valles
    • 1
    • 3
  • E. Llanta Salleras
    • 2
    • 3
  1. 1.Departament de Física AplicadaUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Departament de Física i Enginyeria NuclearUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Grup de RelativitatSocietat Catalana de Física (IEC)Spain

Personalised recommendations