Advertisement

General Relativity and Gravitation

, Volume 10, Issue 8, pp 709–716 | Cite as

Some results on pseudorigid motions

  • Egon Köhler
  • Ruprecht Schattner
Research Articles

Abstract

Ehlers' and Rudolph's generalization of Born rigidity is analyzed and some properties of the corresponding flow field are derived. We investigate if at the center of motion pseudorigidity reduces to Born rigidity and give some weak criteria for determining if a given motion is pseudo rigid.

Keywords

Flow Field Differential Geometry Weak Criterion Bear Rigidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Born, M. (1909).Ann. Phys. Leipzig,30, 1.Google Scholar
  2. 2.
    Pirani, F. A. E., and Williams, G. (1962).Semin. M. Janet,5, 8.Google Scholar
  3. 3.
    Rayner, C. B. (1959).C.R. Acad. Sci.,248, 929.Google Scholar
  4. 4.
    Ehlers, J., and Rudolph, E. (1977).Gen. Rel. Grav.,8, 197.Google Scholar
  5. 5.
    Dixon, W. G. (1970).Proc. R. Soc. London Ser. A,314, 499.Google Scholar
  6. 6.
    Synge, J. L. (1971).Relativity: The General Theory (North Holland, Amsterdam).Google Scholar
  7. 7.
    Schattner, R. (1977). Diplomarbeit, MPI-PAE/Astro 122 (Max-Planck-Institut für Physik und Astrophysik München).Google Scholar
  8. 8.
    Ehlers, J. (1973). InRelativity, Astrophysics and Cosmology, ed. Israel, W. (D. Reidel, Dordrecht), p. 1.Google Scholar
  9. 9.
    Dixon, W. G. (1979). InIsolated Gravitating Systems in General Relativity, course 67 of the Int. School of Physics “Enrico Fermi,” ed. Ehlers, J. (North Holland, Amsterdam).Google Scholar
  10. 10.
    Schattner, R. (1977).Gen. Rel. Grav., in print.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Egon Köhler
    • 1
  • Ruprecht Schattner
    • 2
  1. 1.USP MathematisierungUniversität BielefeldBielefeldFederal Republic of Germany
  2. 2.Max-Planck-Institut für Physik und AstrophysikMünchen 40Federal Republic of Germany

Personalised recommendations