Algebra and Logic

, Volume 33, Issue 6, pp 337–350 | Cite as

Minimal permutation representations of finite simple orthogonal groups

  • V. A. Vasil'ev
  • V. D. Mazurov
Article

Abstract

In the paper, nontrivial permutation representations of minimal degree are studied for finite simple orthogonal groups. For them, we find degrees, ranks, subdegrees, point stabilizers and their pairwise intersections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. D. Mazurov, “Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups,”Algebra Logika,32, No. 3, 42–153 (1993).Google Scholar
  2. 2.
    P. Kleidman and M. Liebeck,The Subgroup Structure of the Finite Classical Groups, Cambridge Univ. Press (1990).Google Scholar
  3. 3.
    M. Aschbcher,Finite Group Theory, Cambridge Univ. Press (1986).Google Scholar
  4. 4.
    J. H. Conway, R. T. Curtis, S. P. Norton, et al.,Atlas of Finite Groups, Oxford (1985).Google Scholar
  5. 5.
    B. N. Cooperstein, “Minimal degree for a permutation representation of a classical group,”Israel J. Math.,30, No. 3, 213–235 (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • V. A. Vasil'ev
  • V. D. Mazurov

There are no affiliations available

Personalised recommendations