General Relativity and Gravitation

, Volume 14, Issue 11, pp 1051–1060

The Lepton Brusselator: Creation of structure in the early universe

  • Rainer E. Zimmermann
Research Articles


The creation of structure in the Lepton Era of the early universe is discussed in terms of a suitably chosen dynamical system of Brusselator type. A bifurcation analysis is performed and a criterion is extracted for the onset of instabilities in the system which in turn lead to self-organizing processes in the associated conglomerate of elementary particles which may be visualized as an imperfect fluid in the hydrodynamic approximation chosen here. This may be interpreted as a symmetry-breaking mechanism which might be responsible for the creation of protostructures on space-time due to density fluctuations, the latter being thought of as controlling the further agglomeration of matter once matter and radiation have decoupled at a temperature level of some 4000 K. This may eventually lead to the formation of galaxies as are observed in the present stage of the universe. The influence of curvature is discussed in considering a metric background of Bianchi type I with respect to the onset of instability. The notion of a local concept on space-time is reviewed from an interactive point of view.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, P. M. (1980). The Evolutionary Paradigm of Dissipative Structures, in: Jantsch, E. (ed.),The Evolutionary Vision, AAAS Meeting, San Francisco, to be published.Google Scholar
  2. 2.
    Belinsky, V. A., and Khalatnikov, I. M. (1976). Influence of Viscosity on the Character of Cosmological Evolution,Sov. Phys. JETP,42, 205.Google Scholar
  3. 3.
    Caderni, N. (1979). Viscous Dissipation and the Evolution of Homogeneous Cosmological Models, in: Demianski (Reference 6).Google Scholar
  4. 4.
    Caderni, N., and Fabbri, R. (1977). Viscous Phenomena and Entropy Production in the Early Universe,Phys. Lett.,69B, 508.Google Scholar
  5. 5.
    Caderni, N., and Fabbri, R. (1978). Neutrino Viscosity in Bianchi-type IX Universes,Phys. Lett.,67A, 19.Google Scholar
  6. 6.
    Demiański, M. (ed.) (1979).Physics of the Expanding Universe, Springer Lecture Notes in Physics 109, Springer, Berlin.Google Scholar
  7. 7.
    Ellis, G. F. R. (1973). Relativistic Cosmology, in: Schatzmann (Reference 23).Google Scholar
  8. 8.
    Hughston, L. P., and Ward, R. S. (1979). Advances in Twistor Theory,Res. Not. in Math. 37, Pitman Publishing, London.Google Scholar
  9. 9.
    Jacobs, K. C. (1968). Spatially Homogeneous and Euclidean Cosmological Models with Shear,Astrophys. J.,153, 661–678.Google Scholar
  10. 10.
    Jacobs, K. C. (1969). Cosmologies of Bianchi Type I with a Uniform Magnetic Field,Astrophys. J.,155, 379–391.Google Scholar
  11. 11.
    Keller, E. F., and Segel, L. A. (1970). Initiation of Slime Mold Aggregation Viewed as an Instability,J. Theor. Biol.,26, 399–415.Google Scholar
  12. 12.
    Lorenz, D. (1980). An Exact Bianchi-Type II Cosmological Model with Matter and an ElectromagneticField, Phys. Lett.,79A, 19–20.Google Scholar
  13. 13.
    Lorenz, D., and Zimmermann, R. E. (1981). Note on a Second Order Differential Equation with Infinitely Many Solutions,Lett. Nuovo Cimenta,31(17), 603–606.Google Scholar
  14. 14.
    McCallum, M. A. H., Stewart, J. M., and Schmidt, B. G. (1970). Anisotropie Stresses in Homogeneous Cosmologies,Commun. Math. Phys.,17, 343.Google Scholar
  15. 15.
    Misner, C. W. (1968). The Isotropy of the Universe,Astrophys. J.,151, 431.Google Scholar
  16. 16.
    Nicolis, G. (1980). Bifurcations and Symmetry-Breaking in Far from Equilibrium Systems, in:Systems Far From Equilibrium, Sitges Conference on Statistical Mechanics, Barcelona, Springer Lecture Notes in Physics 132, Springer, Berlin.Google Scholar
  17. 17.
    Nicolis, G., and Malek-Mansour, M. (1980). Bifurcations and Stochastic Theory in Reaction-Diffusion Systems, in: Halensee Seminar on Self-Organization, Berlin, preprint.Google Scholar
  18. 18.
    Nicolis, G., and Prigogine, I. (1977).Self-Organization in Non-Equilibrium Systems, Wiley-Interscience, New York.Google Scholar
  19. 19.
    Poston, T., and Stewart, I. (1978).Catastrophe Theory and its Applications, Pitman Publishing, London.Google Scholar
  20. 20.
    Prigogine, I. (1976). Order through Fluctuation: Self-Organization and Social System, in: Jantsch, E. and Waddington, C. H. (eds.),Evolution and Consciousness, Addison-Wesley, Reading, Massachusetts.Google Scholar
  21. 21.
    Prigogine, I. (1979).Vom Sein zum Werden, Piper Verlag, Munich.Google Scholar
  22. 22.
    Ryan, M. P., and Shepley, L. C. (1975).Homogeneous Relativistic Cosmologies, Princeton University Press, Princeton, New Jersey.Google Scholar
  23. 23.
    Schatzmann, E. (ed.) (1973).The Cargèse Lectures in Physics,6, Gordon and Breach, New York.Google Scholar
  24. 24.
    Silk, J. (1980).The Big Bang, Creation and Evolution of the Universe, Freeman Publishing, San Francisco.Google Scholar
  25. 25.
    Stewart, J. M. (1973). Relativistic Thermodynamics and Kinetic Theory with Applications to Cosmology, in: Schatzmann (Reference 23).Google Scholar
  26. 26.
    Thom, R. (1975).Structural Stability and Morphogenesis, Benjamin, New York.Google Scholar
  27. 27.
    Weinberg, S. (1971). Entropy Generation and the Survival of Protogalaxies in an Expanding Universe,Astrophys. J.,168, 175.Google Scholar
  28. 28.
    Weinberg, S. (1972).Gravitation and Cosmology, Wiley, New York.Google Scholar
  29. 29.
    Zel'dovich, Ya. B. (1979). Creation of Particles by Gravitational Fields, in: Demiański (Reference 6).Google Scholar
  30. 30.
    Zimmermann, R. E. (1980). A Brusselator Model for Spontaneous Creation of Structure in the Early Universe, in: Workshop Early Universe, 10th Texas Symposium on Relativistic Astrophysics, Baltimore.Google Scholar
  31. 31.
    Zimmermann, R. E. (1981a). The Geometry of Hyperphysics,Psychotronik,2(4), 1–32.Google Scholar
  32. 32.
    Zimmermann, R. E. (1981b). Symmetry Breaking in Relativistic Continuum Mechanics, in: Proc. 1st Int. Whitsun Meeting on Self-Organization and Dissipative Structures, Wunsiedel, West Germany. Published by Int. Study Group on Self Organization, Berlin, Wien, London. See also conference report: M. Bayerl,Phys. Blätter GPS38 (1982) Nr. 4, 103.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Rainer E. Zimmermann
    • 1
  1. 1.Federal Supervisory Office for Insturance and Institute of Statistics and Actuarial Science, Economics DepartmentFree UniversityBerlin
  2. 2.Berlin 45

Personalised recommendations