General Relativity and Gravitation

, Volume 23, Issue 7, pp 827–841

Some electromagnetic consequences of a geometric unified theory of gravitation and electromagnetism

  • Gustavo González-Martín
Research Articles


The geometrical unified theory of gravitation and electromagnetism discussed in previous publications requires that electromagnetism be represented by an SU(2) subgroup. Electric matter should correspond to irreducible representations of the structure group, SL(4,ℝ), induced from its compact subgroup, rotation SU(2)x electromagnetic SU(2). Results predict the quantization of electric charge, magnetic flux and angular momentum without requiring magnetic monopoles. Unexpectedly, the necessary quanta of charge and flux imply fractional quantization of transverse resistance, under certain conditions (Fractional Quantum Hall Effect).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    González-Martín, G. (1987).Phys. Rev. D,35, 1225.Google Scholar
  2. 2.
    González-Martín, G. (1990).Gen. Rel. Grav.,22, 481.Google Scholar
  3. 3.
    Barut, A. O. (1964).Phys. Rev.,133, B839.Google Scholar
  4. 4.
    Hermann, R. (1966).Lie Groups for Physicists (W. A. Benjamin, New York).Google Scholar
  5. 5.
    Gilmore, R. (1974).Lie Groups, Lie Algebras and Some of Their Applications (John Wiley & Sons, New York).Google Scholar
  6. 6.
    Dirac, P. A. M. (1948).Phys. Rev.,74, 817.Google Scholar
  7. 7.
    Wigner, E. P. (1939).Ann. Math.,40, 149.Google Scholar
  8. 8.
    Doubrvine, B., Novikov, S., Fomenko, A. (1982).Géometric Contemporaine, Méthodes et Applications (Mir, Moscow), vol. 2.Google Scholar
  9. 9.
    Helgason, S. (1962),Differential Geometry and Symmetric Spaces (Academic Press, New York).Google Scholar
  10. 10.
    Deaver, B. S., and Fairbank, W. M. (1961).Phys. Rev. Lett.,7, 43.Google Scholar
  11. 11.
    Doll, R., and Nabauer, M. (1961).Phys. Rev. Lett.,7, 51.Google Scholar
  12. 12.
    London, F. (1950).Superfluids (John Wiley & Sons, New York), vol. 1.Google Scholar
  13. 13.
    Tsui, D., Stornier, H., Gossard, A. (1982).Phys. Rev. Lett.,48, 1559; Willet, R., et al. (1987).Phys. Rev. Lett.,59, 1776.Google Scholar
  14. 14.
    Klitzing, K. V., Dorda, G., Pepper, M. (1980).Phys. Rev. Lett,45, 494.Google Scholar
  15. 15.
    Aoki, H., Ando, T. (1981).Solid State Comm.,38, 1079.Google Scholar
  16. 16.
    Laughlin, R. (1983).Phys. Rev. Lett.,50, 1395.Google Scholar
  17. 17.
    Landau, L. D., Lifshitz, E. M. (1965).Mécanique Quantique, Théorie Non Relativiste (2nd ed., Mir, Moscow).Google Scholar
  18. 18.
    Meissner, W., Ochsenfeld, R. (1983).Naturwiss.,21, 787.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Gustavo González-Martín
    • 1
  1. 1.Departamento de FísicaUniversidad Simón BolivarCaracasVenezuala

Personalised recommendations