Journal of Low Temperature Physics

, Volume 95, Issue 1–2, pp 153–168 | Cite as

A theory for the superconducting phases of UPt3

  • J. A. Sauls
Anisotropic/Unconventional Pairing


I discuss a phenomenological theory for the multiple superconducting phases of UPt3 that is based on an order parameter belonging to an orbital 2D representation of the hexagonal point group which is coupled to a weak symmetry breaking field. I show that (1) the existing H-T and P-T phase diagrams (including an apparent tetracritical point in the H-T plane for all field orientations), (2) the anisotropy of the upper critical field over the full temperature range, (3) the correlation between superconductivity and basal plane antiferromagnetism and (4) low-temperature power laws in the transport and thermodynamic properties can be explained qualitatively, and in many respects quantitatively, by an odd-parity, E2u order parameter with a pair spin projection of zero along the ĉ-axis. AFM ordering in the basal plane, which couples to the superconducting order parameter, acts as the symmetry breaking field that is responsible for both the apparent tetracritical point and the zero-field double transition.


Anisotropy Basal Plane Point Group Critical Field Superconducting Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    A. Sulpiceet al., J. Low Temp. Phys.62, 39 (1986).Google Scholar
  2. 3.
    R. Fisheret al., Phys. Rev. Lett.62, 1411 (1989).Google Scholar
  3. 4.
    B. Shivaram, T. Rosenbaum, and D. Hinks, Phys. Rev. Lett.57, 1259 (1986).Google Scholar
  4. 5.
    L. Taillefer, F. Piquemal, and J. Flouquet, PhysicaC 153–155, 451 (1988).Google Scholar
  5. 6.
    T. Vorenkamp, Ph.D. thesis, University of Amsterdam, 1992.Google Scholar
  6. 7.
    D. Bishopet al., Phys. Rev. Lett.53, 1009 (1984).Google Scholar
  7. 8.
    V. Mülleret al., Sol. State Comm.57, 319 (1986).Google Scholar
  8. 9.
    B. Shivaram, Y. Jeong, T. Rosenbaum, and D. Hinks, Phys. Rev. Lett.56, 1078 (1986).Google Scholar
  9. 10.
    F. Grosset al., PhysicaC, 153 (1988).Google Scholar
  10. 11.
    B. Shivaram, J. Gannon Jr., and D. Hinks, PhysicaB 163, 141 (1990).Google Scholar
  11. 12.
    P. J. C. Signoreet al., Phys. Rev.B45, 10151 (1992).Google Scholar
  12. 13.
    K. Hasselbach, L. Taillefer, and J. Flouquet, Phys. Rev. Lett.63, 93 (1989).Google Scholar
  13. 14.
    V. Mülleret al., Phys. Rev. Lett.58, 1224 (1987).Google Scholar
  14. 15.
    Y. Qianet al., Solid State Commun.63, 599 (1987).Google Scholar
  15. 16.
    A. Schenstromet al., Phys. Rev. Lett.62, 332 (1989).Google Scholar
  16. 17.
    R. Kleiman, P. Gammel, E. Bucher, and D. Bishop, Phys. Rev. Lett.62, 328 (1989).Google Scholar
  17. 18.
    G. Brulset al., Phys. Rev. Lett.65, 2294 (1990).Google Scholar
  18. 19.
    S. Adenwallaet al., Phys. Rev. Lett.65, 2298 (1990).Google Scholar
  19. 20.
    G. Bullock, B. Shivaram, and D. Hinks, Europhys. Lett.21, 357 (1993).Google Scholar
  20. 21.
    N. H. van Dijket al., submitted to Phys. Rev. B (1993).Google Scholar
  21. 22.
    P. Thalmeieret al., PhysicaC175, 61 (1991).Google Scholar
  22. 23.
    G. Aeppliet al., Phys. Rev. Lett.60, 615 (1988).Google Scholar
  23. 24.
    T. Trappmann, H. v. Löhneysen, and L. Taillefer, Phys. Rev.B43, 13714 (1991).Google Scholar
  24. 25.
    S. Hayden, L. Taillefer, C. Vettier, and J. Flouquet, Phys. Rev.B46, 8675 (1992).Google Scholar
  25. 26.
    P. Anderson, Phys. Rev.B30, 4000 (1984).Google Scholar
  26. 27.
    G. Volovik and L. Gor'kov, Sov. Phys. JETP61, 843 (1985).Google Scholar
  27. 28.
    P. A. Leeet al., Comments on Cond. Mat. Phys.12, 99 (1986).Google Scholar
  28. 29.
    G. Volovik and L. Gor'kov, Sov. Phys. JETP Lett.39, 674 (1984).Google Scholar
  29. 31.
    S. Yip and A. Garg, Phys. Rev.B48, 3304 (1993).Google Scholar
  30. 32.
    I. Luk'yanchuk, J. de Phys.I1, 1155 (1991).Google Scholar
  31. 33.
    D. Chen and A. Garg, Phys. Rev. Lett.70, 1689 (1993).Google Scholar
  32. 34.
    D. Hess, T. Tokuyasu, and J. Sauls, J. Phys. Condens. Matter1, 8135 (1989).Google Scholar
  33. 35.
    K. Machida and M. Ozaki, J. Phys. Soc. Jpn.58, 2244 (1989).Google Scholar
  34. 36.
    L. Gor'kov, Sov. Sci. Rev. A.9, 1 (1987).Google Scholar
  35. 37.
    R. Joynt, Sup. Sci. Tech.1, 210 (1988).Google Scholar
  36. 38.
    T. Tokuyasu, D. Hess, and J. Sauls, Phys. Rev.B41, 8891 (1990).Google Scholar
  37. 39.
    R. Joynt, V. Mineev, G. Volovik, and Zhitomirskii, Phys. Rev.B42, 2014 (1990).Google Scholar
  38. 40.
    M. Sigrist and K. Ueda, Rev. Mod. Phys.63, 239 (1991).Google Scholar
  39. 41.
    M. Sigrist, T. M. Rice, and K. Ueda, Phys. Rev. Lett.63, 1727 (1989).Google Scholar
  40. 42.
    T. Tokuyasu and J. Sauls, Physica B165–166, 347 (1990).Google Scholar
  41. 43.
    M. Palumbo, P. Muzikar, and J. Sauls, Phys. Rev.B42, 2681 (1990).Google Scholar
  42. 44.
    Y. Barash and A. S. Mel'nikov, Sov. Phys. JETP73, 170 (1991).Google Scholar
  43. 45.
    R. Joynt, Euro. Phys. Lett.16, 289 (1991).Google Scholar
  44. 46.
    A. S. Mel'nikov, Sov. Phys. JETP74, 1059 (1992).Google Scholar
  45. 47.
    M. Palumbo and P. Muzikar, Phys. Rev.B45, 12620 (1992).Google Scholar
  46. 48.
    M. Palumbo and P. Muzikar, Euro. Phys. Lett. 20, 267 (1992).Google Scholar
  47. 49.
    C. Choi and P. Muzikar, Phys. Rev.B40, 5144 (1989).Google Scholar
  48. 50.
    P. Frings, B. Renker, and C. Vettier, Physica B151, 499 (1988).Google Scholar
  49. 51.
    B. Shivaram, J. Gannon Jr., and D. Hinks, Phys. Rev. Lett.63, 1723 (1989).Google Scholar
  50. 52.
    E. Vincentet al., J. Phys, Cond. Matt.3, 3517 (1991).Google Scholar
  51. 53.
    E. A. Knetch, J. A. Mydosh, T. Vorenkamp, and A. A. Menovsky, J.M.M.M.108, 75 (1992).Google Scholar
  52. 54.
    L. Tailleferet al., J. Magn. Magn. Mat.90–91, 623 (1990).Google Scholar
  53. 55.
    K. Machida and M. Ozaki, Phys. Rev. Lett.66, 3293 (1991).Google Scholar
  54. 57.
    M. Zhitomirskii and I. Luk'yanchuk, Sov. Phys. JETP74, 1046 (1992).Google Scholar
  55. 58.
    M. Zhitomirskii and I. Luk'yanchuk, Sov. Phys. JETP Lett.58, 131 (1993).Google Scholar
  56. 59.
    J. Sauls, to be published in Adv. Phys. (1994).Google Scholar
  57. 60.
    C. Choi and J. Sauls, Phys. Rev. Lett.66, 484 (1991).Google Scholar
  58. 61.
    C. Choi and J. Sauls, Phys. Rev.B48, 13684 (1993).Google Scholar
  59. 62.
    P. H. Frings, J. Franse, F. Boer, and A. Menovsky, J. Mag. Mag. Mat.31–34, 240 (1983).Google Scholar
  60. 64.
    This statement can be made quantitative with a specific bandstructure.,c.f. Ref. (59) and V. Vinokour, J. Sauls, and M. Norman, unpublished (1994).Google Scholar
  61. 66.
    M. Norman, PhysicaC194, 205 (1992).Google Scholar
  62. 67.
    S. Schmitt-Rink, K. Miyake, and C. Varma, Phys. Rev. Lett.57, 2575 (1986).Google Scholar
  63. 68.
    C. Broholmet al., Phys. Rev. Lett.65, 2062 (1990).Google Scholar
  64. 69.
    C. J. Pethick and D. Pines, Phys. Rev. Lett.57, 118 (1986).Google Scholar
  65. 70.
    P. J. Hirschfeld, D. Vollhardt, and P. Wölfle, Sol. State Comm.59, 111 (1986).Google Scholar
  66. 71.
    E. Blount, Phys. Rev.B32, 2935 (1985).Google Scholar
  67. 72.
    M. Norman, Phys. Rev.B43, 6121 (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • J. A. Sauls
    • 1
    • 2
  1. 1.Department of Physics & Astronomy Northwestern UniversityEvanstonUSA
  2. 2.NorditaCopenhagen ØDenmark

Personalised recommendations