Journal of Low Temperature Physics

, Volume 101, Issue 5–6, pp 1099–1121 | Cite as

The effect of surfaces on the tunneling density of states of an anisotropically paired superconductor

  • L. J. Buchholtz
  • Mario Palumbo
  • D. Rainer
  • J. A. Sauls
Articles

Abstract

We present calculations of the tunneling density of states in an anisotropically paired superconductor for two different sample geometries: a semi-infinite system with a single specular wall, and a slab of finite thickness and infinite lateral extent. In both cases we are interested in the effects of surface pair breaking on the tunneling spectrum. We take the stable bulk phase to be of dx2−y2 symmetry. Our calculations are performed within two different band structure environments: an isotropic cylindrical Fermi surface with a bulk order parameter of the form Δ ∼ k x 2 −k y 2 , and a nontrivial tight-binding Fermi surface with the order parameter structure coming from an antiferromagnetic spin-fluctuation model. In each case we find additional structures in the energy spectrum coming from the surface layer. These structures are sensitive to the orientation of the surface with respect to the crystal lattice, and have their origins in the detailed form of the momentum and spatial dependence of the order parameter. By means of tunneling spectroscopy, one can obtain information on both the anisotropy of the energy gap, ¦Δ(p)¦, as well as on the phase of the order parameter, Δ(p) = ¦Δ(p)¦ eiϕ(p).

Keywords

Fermi Surface Spatial Dependence Finite Thickness Sample Geometry Lateral Extent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. J. Buchholtz and G. Zwicknagl,Phys. Rev. B 23, 5788 (1981).Google Scholar
  2. 2.
    W. Zhang, J. Kurkijärvi, and E. Thuneberg,Phys. Lett. 109A, 238 (1985).Google Scholar
  3. 3.
    J. Hara and K. Nagai,Prog. Theor. Phys. 76, 1237 (1986).Google Scholar
  4. 4.
    W. Zhang, J. Kurkijärvi, and E. Thuneberg,Phys. Rev. B 36, 1987 (1987).Google Scholar
  5. 5.
    T. Tokuyasu, J. A. Sauls, and D. Rainer,Phys. Rev. B 38, 8823 (1988).Google Scholar
  6. 6.
    L. J. Buchholtz,Phys. Rev. B 44, 4610 (1991).Google Scholar
  7. 7.
    N. B. Kopnin, P. I. Soininen, and M. Salomaa,J. Low Temp. Phys. 85, 267 (1991).Google Scholar
  8. 8.
    C.-R. Hu,Phys. Rev. Lett. 72, 1526 (1994).Google Scholar
  9. 9.
    S. Kashiwaya and Y. Tanaka,Phys. Rev. B 51, 1350 (1995).Google Scholar
  10. 10.
    Y. Tanaka and S. Kashiwaya,Phys. Rev. Lett. 74, 3451 (1995).Google Scholar
  11. 11.
    Y. Nagato and K. Nagai,Phys. Rev. B 51, 16254 (1995).Google Scholar
  12. 12.
    M. Matsumoto and H. Shiba,J. Phys. Soc. Jpn. 64, 1703 (1995).Google Scholar
  13. 13.
    L. J. Buchholtz, M. Palumbo, D. Rainer, and J. A. Sauls,J. Low Temp. Phys. 101, 1079 (1995).Google Scholar
  14. 14.
    J. W. Serene and D. Rainer,Physics Reports 4, 221 (1983).Google Scholar
  15. 15.
    Y. N. Ovchinnikov,Zh. Eksp. Teor. Fiz. 56, 1590 (1969).Google Scholar
  16. 16.
    J. Kurkijärvi, D. Rainer, and J. Sauls,Can. J. Phys. 65, 1440 (1987).Google Scholar
  17. 17.
    R. J. Radtke, S. Ullah, K. Levin, and M. R. Norman,Phys. Rev. B 46, 11975 (1992).Google Scholar
  18. 18.
    R. J. Radtke and M. R. Norman,Phys. Rev. B 50, 9554 (1994).Google Scholar
  19. 19.
    M. R. Norman, private communication (1995).Google Scholar
  20. 20.
    M. F. Atiyah, V. K. Patodi, and I. M. Singer,Proc. Camb. Phil. Soc. 77, 43 (1975).Google Scholar
  21. 21.
    W. J. Tomasch,Phys. Rev. Lett. 15, 672 (1965).Google Scholar
  22. 22.
    W. J. Tomasch,Phys. Rev. Lett. 16, 16 (1966).Google Scholar
  23. 23.
    C. B. Duke,Tunneling in Solids, 1 ed. (Academic Press, New York, 1969), Chap. 7.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • L. J. Buchholtz
    • 1
  • Mario Palumbo
    • 2
  • D. Rainer
    • 2
  • J. A. Sauls
    • 3
  1. 1.Department of PhysicsCalifornia State UniversityChico, ChicoUSA
  2. 2.Physikalisches InstitutUniversität BayreuthBayreuthGermany
  3. 3.Department of Physics & AstronomyNorthwestern UniversityEvanstonUSA

Personalised recommendations