Advertisement

Journal of Structural Chemistry

, Volume 26, Issue 2, pp 157–164 | Cite as

Covalent nature of the hydrogen bond

  • R. M. Minyaev
  • G. V. Orlova
Article

Conclusions

The main conclusion derived from this work is that the H bond in all three FHF, FHFH, and HFHFH+ systems is a three-centered, two-electron, covalent chemical bond formed at the expense of 2a1g (2a1) MO bonding. The 1a1g MO bonding has little effect on H-bond stabilization. Thus the H bond is a one-orbital chemical bond with its formation corresponding, to that of a three-centered MO, as distinguished from molecules bonded by a two-centered MO (e.g., F2 or HOOH [41]; hence the H bond is much weaker. The uniqueness of the H bond lies in its being the weakest covalent bond. It is precisely the covalent nature of the H bond that gives it its characteristic properties, i.e., saturability and strict compliance to structural requirements. In addition, the low dissociation barrier makes it easy to control the H bond under mild conditions, which is very important in biological systems.

Keywords

Hydrogen Hydrogen Bond Expense Biological System Chemical Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. A. Pople, Faraday Discuss. Chem. Soc.,73, 7 (1982).Google Scholar
  2. 2.
    I. P. Gragerov and V. K. Pogorelyi, The Hydrogen Bond and Rapid Proton Exchange [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  3. 3.
    V. P. Bulychev and N. D. Sokolov, in: The Hydrogen Bond [in Russian], N. D. Sokolov (ed.), Nauka, Moscow (1981), p. 10.Google Scholar
  4. 4.
    P. Schuster, “The fine structure of the hydrogen bond”, in: Intermolecular Interactions: From Diatomics to Biopolymers, B. Pullman (ed.), Wiley, New York (1977).Google Scholar
  5. 5.
    C. A. Coulson, Research (London),10, 49 (1957).Google Scholar
  6. 6.
    J. N. Murrell, Chem. Br.,5, 107 (1969).Google Scholar
  7. 7.
    P. Kollman, J. Liebman, and L. C. Allen, J. Am. Chem. Soc.,92, 1142 (1970).Google Scholar
  8. 8.
    I. G. Kaplan, Introduction to the Theory of Intermolecular Interactions [in Russian], Nauka, Moscow (1982) p. 74.Google Scholar
  9. 9.
    P. A. Kollman and L. C. Allen, Chem. Rev.,72, 283 (1972).Google Scholar
  10. 10.
    L. C. Allen, J. Am. Chem. Soc.,97, 6921 (1972).Google Scholar
  11. 11.
    J. D. Dill, L. C. Allen, W. C. Topp, and J. A. Pople, J. Am. Chem. Soc.,97, 7220 (1975).Google Scholar
  12. 12.
    P. Kollman, J. McKelwey, A. Johanson, and S. Rothenberg, J. Am. Chem. Soc.,97, 955 (1975).Google Scholar
  13. 13.
    J. E. Del Bene, J. Phys. Chem.,82, 1341 (1982).Google Scholar
  14. 14.
    P. N. Swepston, S. Colby, H. L. Sellers, and L. Schafer, Chem. Phys. Lett.,72, 364 (1980).Google Scholar
  15. 15.
    A. Beyer and A. Karpfen, Chem. Phys.,64, 343 (1982).Google Scholar
  16. 16.
    M. D. Newton and N. R. Kestner, Chem. Phys. Lett.,94, 198 (1983).Google Scholar
  17. 17.
    P. A. Kollman, Acc. Chem. Res.,10, 365 (1977).Google Scholar
  18. 18.
    P. Hobza and K. Zahradnic, Int. J. Quantum Chem.,23, 1 (1983).Google Scholar
  19. 19.
    Encyclopedic Chemical Dictionary [in Russian], Sov. Entsiklopediya, Moscow (1983), p. 264.Google Scholar
  20. 20.
    V. V. Minkin and R. M. Minyaev, Usp. Khim.,51, 586 (1982).Google Scholar
  21. 21.
    B. M. Gimarc, Acc. Chem. Res,7, 384 (1974).Google Scholar
  22. 22.
    R. M. Minyaev and V. I. Pavlov, Zh. Org. Khim.,18, 1595 (1982).Google Scholar
  23. 23.
    R. M. Minyaev and V. I. Pavlov, J. Mol. Struct. Theochem.,9, No. 2, 205 (1983).Google Scholar
  24. 24.
    P. J. Desmeules and L. C. Allen, J. Chem. Phys.,72, 4731 (1980).Google Scholar
  25. 25.
    T. R. Dyke, B. J. Howard, and W. Klemperer, J. Chem. Phys.,56, 2442 (1972).Google Scholar
  26. 26.
    D. F. Smith, J. Mol. Spectrosc.,3, 473 (1959).Google Scholar
  27. 27.
    E. F. Frank and F. Meyer Z. Elektrochem.,63, 577 (1959).Google Scholar
  28. 28.
    R. Hoffmann, T. A. Albright, and D. L. Thorn, Pure Appl. Chem.,50, 1 (1978).Google Scholar
  29. 29.
    D. E. Feller, M. W. Schmidt, and K. Ruedenberg J. Am. Chem. Soc.,104, 960 (1982).Google Scholar
  30. 30.
    W. England and K. Ruedenberg, Theor. Chim. Acta.,22, 196 (1971).Google Scholar
  31. 31.
    D. A. Dixon, D. A. Kleier, T. A. Halgren, et al. J. Am. Chem. Soc.,99, 6226 (1977).Google Scholar
  32. 32.
    C. Trindl and O. Sinanoglu, J. Chem. Phys.,59, 65 (1968).Google Scholar
  33. 33.
    R. Hoffman and J. E. Williams, Jr., Helv. Chim. Acta,55, 67 (1972).Google Scholar
  34. 34.
    L. L. Lohr, Jr. and R. J. Sloboda, J. Chem. Phys.,85, 1332 (1982).Google Scholar
  35. 35.
    S. Scheiner, J. Am. Chem. Soc.,103, 315 (1981) J. Chem. Phys.,86, 376 (1982).Google Scholar
  36. 36.
    S. Scheiner and L. B. Harding, J. Am. Chem. Soc.,103, 2169 (1981).Google Scholar
  37. 37.
    S. Scheiner, M. Lgorzat, M. Szczesniak, and L. D. Bingham, Int. J. Quantum Chem.,23, 739 (1983).Google Scholar
  38. 38.
    L. I. Virin, R. V. Dzhagatspanyan, G. V. Karachevtsev, et al., Ion-Molecule Reactions in Gases [in Russian], Nauka, Moscow (1979) p. 15.Google Scholar
  39. 39.
    Z. Berkovitch-Yellin and L. Leiserowitz, J. Am. Chem. Soc.,99, 6106 (1977).Google Scholar
  40. 40.
    P. Hobza, H. J. Hofmann, and R. J. Zahradnik, J. Phys. Chem.,87, 573, (1983).Google Scholar
  41. 41.
    V. I. Minkin, B. Ya. Simkin, and R. M. Minyaev, Theory of Molecular Structures [in Russian], Vysshaya Shkola, Moscow (1979), p. 129.Google Scholar
  42. 42.
    R. Hoffmann, J. Chem. Phys.,39, 1397 (1963).Google Scholar
  43. 43.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys.,54, 724 (1971).Google Scholar
  44. 44.
    W. J. Hehre, W. A. Lathan, R. Ditchfield, et al., Program No. 236, QCPE, University of Indiana Bloomington, Indiana, USA.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • R. M. Minyaev
    • 1
  • G. V. Orlova
    • 1
  1. 1.Scientific-Research Institute of Organic and Physical ChemistryM. A. Suslov Rostov State UniversityRussia

Personalised recommendations