Journal of Low Temperature Physics

, Volume 99, Issue 1–2, pp 81–105 | Cite as

Two-particle tunneling current in Josephson junctions

  • Yu. N. Ovchinnikov
  • R. Cristiano
  • C. Nappi
  • A. Barone


The contribution to the tunneling current of a Josephson junction from the Two-particle tunneling, to the 2nd order approximation in the barrier transparency, is investigated. Expressions for the current onset amplitudes corresponding to eV = Δ1,2 are given together with the full expressions for the voltage and the temperature dependencies of the two-particles current. The theory has ben developed to take also into account corrections due to depairing mechanisms, which lead to the smearing of the current singularities. Introducing a depairing parameter Γ, which accounts for the probability of these processes, I–V curves in the voltage region of the onset of single and two particle current are obtained. It is shown that, though having the same functional dependence, spreading occurs over a voltage range of different widths. In particular, it is shown that the width of the single-particle structure is twice larger the one for the two-particle. A careful investigation of the I–V curves in the region 2 Δ-eV ≪ Δ is presented and some aspects of the interesting voltage region near ¦Δ12¦ is discussed.


Magnetic Material Order Approximation Versus Curve Functional Dependence Voltage Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Barone, R. Cristiano and S. Pagano,X-Ray Detection by Superconducting Tunnel Junctions, Eds. World Scientific, Singapore (1991) N. E. Booth and G. L. Salmon,Low Temperature detectors for Neutrinos and Dark Matter IV, Eds. France (1991) Proc. of the fifth Intern. Conf. on low Temperature detectors, Berkeley July 28–Aug. 3, 1993. inJ. Low Temp. Phys. 93, (1993).Google Scholar
  2. 2.
    E. C. G. Kirk, M. G. Blamire, R. E. Somekh, J. E. Evetts, D. Van Vechten and M. N. Lovellette,IEEET Trans. Magn. MAG-27, 3137 (1991).Google Scholar
  3. 3.
    D. J. Adelerhof, E. P. Houwman, P. B. Fransen, D. Veldhuis, J. Flokstra and H. Rogalla,IEEE Trans. Magn. MAG-27, 3153. (1991).Google Scholar
  4. 4.
    R. Monaco, R. Cristiano, L. Frunzio and C. Nappi,J. Appl. Phys. 71, 1888 (1992).Google Scholar
  5. 5.
    R. Cristiano, L. Frunzo and R. Monaco,J. of Superc. 5, 541 (1992).Google Scholar
  6. 6.
    R. Cristiano, L. Frunzio, R. Monaco, C. Nappi and S. Pagano,Phys. Rev. B49, 429 (1994-I).Google Scholar
  7. 7.
    C. L. Foden, N. Rando, A. van Dordrecht, A. Peacock, J. Lumley and C. Pereira,Phys. Rev. B47, 3316 (1993-II).Google Scholar
  8. 8.
    V. Ambegaokar and A. Baratoff,Phys. Rev. Lett. 10, 486 (1963).Google Scholar
  9. 9.
    A. I. Larkin and Yu. N. Ovchinnikov,Sov. Phys. JETP 24, 1035 (1967). N. R. Werthamer,Phys. Rev. 147, 255 (1966).Google Scholar
  10. 10.
    A. W. Kleinsasser, R. E. Miller, W. H. Malison and G. B. Arnold,Phys. Rev. Lett. 72, 1738 (1994).Google Scholar
  11. 11.
    B. N. Taylor and E. Burstein,Phys. Rev. Lett. 10, 14 (1963).Google Scholar
  12. 12.
    J. M. Rowell and W. L. Feldman,Phys. Rev. 172, 393 (1968).Google Scholar
  13. 13.
    P. Mukhopadhyay,Phys. Rev. B17, 402 (1974).Google Scholar
  14. 14.
    P. W. Epperlein, inSQUID '80, Edited by H. D. Hahlbohm and H. Lubbig, W. de Gruyter [T] Co, Berlin, New York, p. 131 (1980) andPhysica 108b, 999 (1981).Google Scholar
  15. 15.
    J. R. Schrieffer and J. Wilkins,Phys. Rev. Lett. 10, 17 (1963).Google Scholar
  16. 16.
    J. Wilkins, inTunnelling Phenomena in Solids, Edited by E. Burnstein and S. Lundquist, Plenum, New York, p. 333 (1969).Google Scholar
  17. 17.
    L. E. Hasselberg, M. T. Levinsen and M. R. Samuelsen,Phys. Rev. B9, 3757 (1974).Google Scholar
  18. 18.
    A. I. Larkin and Yu. N. Ovchinnikov, inQuantum Tunneling in Condensed Media, Edited by Yu. Kagan and A. J. Leggett, North-Holland (1992).Google Scholar
  19. 20.
    I. S. Gradshteyn and I. M. Ryzhik, inTables of Integrals, Series, and Products, Academic Press, N. Y. (1962).Google Scholar
  20. 21.
    A. I. Larkin and Yu. N. Ovchinnikov, inNon Equilibrium Superconductivity, Edited by D. N. Langenberg and A. I. Larkin, Elsevier Science Publisher, Chap. 11 (1986).Google Scholar
  21. 22.
    A. A. Abrikosov, L. P. Gor'kov and I. E. Dzyaloshinskii, inMethods of Quantum Field Theory in Statistical Physics, State Fiz.-Math. Publishing Corporation, Moscow (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Yu. N. Ovchinnikov
    • 1
  • R. Cristiano
    • 1
  • C. Nappi
    • 1
  • A. Barone
    • 2
  1. 1.Istituto di Cibernetica del C.N.R.NapoliItaly
  2. 2.Dipartimento di Scienze FisicheUniversità “Federico II”NapoliItaly

Personalised recommendations