Journal of Low Temperature Physics

, Volume 99, Issue 5–6, pp 651–658 | Cite as

First- and zero-sound velocity and fermi liquid parameter F2s in liquid3He determined by a path length modulation technique

  • P. J. Hamot
  • Y. Lee
  • D. T. Sprague
  • T. M. Haard
  • J. B. Kycia
  • M. R. Rand
  • W. P. Halperin
Rapid Communication

Abstract

We have measured the velocity of first- and zero-sound in liquid3He at 12.6 MHz over the pressure range of 0.6 to 14.5 bar using a path length modulation technique that we have recently developed. From these measurements, the pressure dependent value of the Fermi liquid parameter F2s was calculated and found to be larger at low pressure than previously reported. These new values of F2s indicate that transverse zero-sound is a propagating mode at all pressures. The new values are important for the interpretation of the frequencies of order parameter collective modes in the superfluid phases. The new acoustic technique permits measurements in regimes of very high attenuation with a sensitivity in phase velocity of about 10 ppm achieved by a feedback arrangement. The sound velocity is thus measured continuously throughout the highly attenuating crossover (ωτ ≈ 1) regime, even at the lowest pressures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.J. Hamot, H.H. Hensley and W.P. Halperin, J. Low Temp. Phys.77, 429 (1989).Google Scholar
  2. 2.
    P.J. Hamot, Ph.D. thesis (Northwestern University), unpublished (1994).Google Scholar
  3. 3.
    Y. Lee, P.J. Hamot, D.T. Sprague, T.M. Haard, J.B. Kycia, M.R. Rand, W.P. Halperin, and M.W. Meisel, to be published.Google Scholar
  4. 4.
    P.P. Milliken, R.W. Richardson, and S.J. Williamson, J. Low Temp. Phys.45, 409 (1981).Google Scholar
  5. 5.
    W.R. Abel, A.C. Anderson, and J.C. Wheatley, Phys. Rev. Lett.17, 74 (1966).Google Scholar
  6. 6.
    K. Kara, I. Fujii, K. Kaneko, and A. Ikushima, Physica108B, 1203 (1981).Google Scholar
  7. 7.
    B.N. Engel and G.G. Ihas, Phys. Rev. Lett.55, 955 (1985).Google Scholar
  8. 8.
    G. Baym and C. Pethick,Landau Fermi Liquid Theory, John Wiley and Sons, New York (1991).Google Scholar
  9. 9.
    D.S. Greywall, Phys. Rev. B31, 2675 (1985); D.S. GreywaU, Phys. Rev. B33, 7520 (1986).Google Scholar
  10. 10.
    W.P. Halperin and E. Varoquaux, inSuperfluid 3He, ed. W.P. Halperin and L.P. Pitaevskii, Else vier, (1990).Google Scholar
  11. 11.
    D.S. Greywall and P.A. Busch, Phys. Rev. Lett.49, 146 (1982).Google Scholar
  12. 12.
    B.N. Engel, Ph.D. thesis (University of Florida), unpublished (1988).Google Scholar
  13. 13.
    P.R. Roach and J.B. Ketterson, Phys. Rev. Lett.36, 736 (1976).Google Scholar
  14. 14.
    E.G. Flowers, R.W. Richardson, and S.J. Williamson, Phys. Rev. Lett.37, 309 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • P. J. Hamot
    • 1
  • Y. Lee
    • 1
  • D. T. Sprague
    • 1
  • T. M. Haard
    • 1
  • J. B. Kycia
    • 1
  • M. R. Rand
    • 1
  • W. P. Halperin
    • 1
  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanston

Personalised recommendations