Advertisement

Journal of Low Temperature Physics

, Volume 99, Issue 3–4, pp 535–543 | Cite as

Nonadiabatic superconductivity: Electron phonon interaction beyond Migdal's Theorem

  • L. Pietronero
  • P. Benedetti
  • E. Cappelluti
  • C. Grimaldi
  • S. Strässler
  • G. Varelogiannis
Electron Phonon Physics

Abstract

A common characteristic of all the high Tc materials, oxides and Fullerene compounds, is that the Fermi energy is much smaller than in usual metals and it is of the order of the Debye phonon frequencies. This requires a generalization of the usual BCS-Eliashberg scheme to include non adiabatic effects beyond Migdal's Theorem. We have developed the first steps of this generalization and here we discuss the main results, the possible lines of development and the main open problems. The key point is that the first order non adiabatic effects (vertex corrections and similar processes) depend crucially on the momentum (q) of the exchanged phonons. If small q scattering is predominant, one obtains a strong enhancement of Tc and various other effecs also for the normal state that should lead to precise experimental predictions. The predominance of small q scattering can be naturally obtained from electronic correlations but it could arise also from different properties like peaks in the density of states.

Keywords

Fullerene Magnetic Material Open Problem Fermi Energy Similar Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.G. Bednorz and K.A. Muller,Z. Phys. B 64, 189 (1986)Google Scholar
  2. 2.
    R.D. Parks Ed. “Superconductivity”, Dekker, New York (1969)Google Scholar
  3. 3.
    A.B. Migdal,Sov. Phys. JETP 34, 996 (1958)Google Scholar
  4. 4.
    G.M. Eliashberg,Sov. Phys. JETP 11, 696 (1960); D.J. Scalapino, in Ref (2), Vol. 1, p.449; P.B. Allen and B. Mitrovic, in Solid State Physics Vol.37, p.1 (1982);Google Scholar
  5. 5.
    W.E. Pickett, private comm.Google Scholar
  6. 6.
    W.E. Pickett in Solid State Physics Ed by H. Ehrenreich and F. Spaepan, Academic Press, in print; O.K. Andersen et al. Physica C185-189, 147 (1991); P. Fulde, Physica C153–155, 1769 (1988); P.W. Anderson and J.R. Schrieffer, Physics Today June 1991, p. 54Google Scholar
  7. 7.
    C. Taliani et al Eds. “Fullerenes: status and perspectives”, World Sci. Singapore (1992)Google Scholar
  8. 8.
    L. Pietronero,Europhys. Lett. 17, 365 (1992)Google Scholar
  9. 9.
    C. Varma, J. Zaanen and K. Raghavachari,Science 254, 989 (1991); M. Schluter, M. Lanoo, M. Needels, G.A. Baraff and D. Tomanek,Phys. Rev. Lett. 68, 526 (1992)Google Scholar
  10. 10.
    Y.J. Uemura et al,Phys. Rev. Lett. 66, 2665 (1992); N. D'Ambrumenil,Nature 352, 472 (1992)Google Scholar
  11. 11.
    D. Zech, H. Keller, K. Conder, E. Kaldis, E. Liarokapls, N. Poulakis and K.A. Muller,Nature 371, 681 (1994)Google Scholar
  12. 12.
    F. Guinea et al Eds., Proc. of San Sebastian Conf. on “The Physics and the Mathematical Physics of the Hubbard Model”, Oct. 1993, in printGoogle Scholar
  13. 13.
    D. Vollhardt,Rev. Mod. Phys. 56, 99 (1984); C. Castellani et al,Phys. Rev. Lett. 69, 2009 (1992); M.J. Rozenberg, X.Y. Zhang and G. Kotliar,Phys. Rev. Lett. 69, 1236 (1992)Google Scholar
  14. 14.
    L. Pietronero and S. Strassler,Europhys. Lett. 18, 627 (1992)Google Scholar
  15. 15.
    R. Micnas, J. Ranninger and S. Robaskiewicz,Rev. Mod. Phys. 62, 113 (1990); A.S. Alexandrov and N.F. Mott,Supercond. Sci. Technol. 6, 215 (1993)Google Scholar
  16. 16.
    M. De Seta and F. Evangelisti,Phys. Rev. Lett. 71, 2477 (1994)Google Scholar
  17. 17.
    D. van der Marel and G. Rietveld,Phys. Rev. Lett. 69, 2575 (1992); G.Rietveld, N.Y. Chen and D. van der Marel,Phys. Rev. Lett. 69, 2578 (1992)Google Scholar
  18. 18.
    L. Pietronero, C. Grimaldi and S. Strassler,Phys. Rev. B, in print.Google Scholar
  19. 19.
    C. Grimaldi, L. Pietronero and S. Strassler,Phys. Rev. B, in print.Google Scholar
  20. 20.
    M. Grabowsky and L.J. Sham,Phys. Rev. B 29, 6132 (1984)Google Scholar
  21. 21.
    E. Cappelluti and L. Pietronero, preprint.Google Scholar
  22. 22.
    A.A. Abrikosov,Physica C 222, 191 (1994)Google Scholar
  23. 23.
    M.L. Kulic and R. Zeyer,Phys. Rev. B 49, 4395 (1994);Physica B 199–200, 358 (1994)Google Scholar
  24. 24.
    M. Grilli and C. Castellani,Phys. Rev. B, in print.Google Scholar
  25. 25.
    K.J. von Szczepanski and K.W. Becker,Z. Phys. B 89, 327 (1992)Google Scholar
  26. 26.
    R. Combescot and Varelogiannis,Europhys. Lett. 17, 635 (1992)Google Scholar
  27. 27.
    P. Benedetti, C. Grimaldi, L. Pietronero and G. Varelogiannis,Europhys. Lett., in print.Google Scholar
  28. 28.
    O. Gunnarson, preprintGoogle Scholar
  29. 29.
    D. Rainer, preprintGoogle Scholar
  30. 30.
    O. Gunnarson and G. Zwicknagl,Phys. Rev. Lett. 69, 957 (&992)Google Scholar
  31. 31.
    S. Ciuchi, F. De Pasquale, C. Masciovecchio and D. Feinberg,Europhys. Lett. 24, 575 (1993); J.K. Freericks, M. Jarrell and D.J. Scalapino,Europhys. Lett. 25, 37 (1994);Google Scholar
  32. 32.
    A. Auerbach, N. Mainini and E. Tosatti,Phys. Rev. B 49, 12998 (1994);ibid. B 49, 13008 (1994)Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • L. Pietronero
    • 1
  • P. Benedetti
    • 1
    • 2
  • E. Cappelluti
    • 1
    • 3
  • C. Grimaldi
    • 1
    • 3
  • S. Strässler
    • 1
    • 4
  • G. Varelogiannis
    • 1
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Max Planck Institute fur Physik der Komplexer SystemeAussenstelle StuttgartStuttgartGermany
  3. 3.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  4. 4.HUBA Control AGWurenlosSwitzerland

Personalised recommendations