Advertisement

Journal of Low Temperature Physics

, Volume 99, Issue 3–4, pp 319–324 | Cite as

Spiral magnetism and collective excitations in doped Hubbard models

  • Wolfram Brenig
Magnetism

Abstract

We discuss the ground state properties and the collective dynamics of spiral magnetic states in the two dimensional Hubbard model. In particular we present the phase diagram in the presence of a finite next-nearest-neighbor hopping integral t′. In contrast to the plain t Hubbard-model we find a region of stable antiferromagnetism in an extended interval of electron (hole) doping off half filling for a negative (positive) ratio of t′/t. In addition we investigate the coupled charge and spiral spin-excitations off half filling. The resulting collective modes are found to be highly anisotropic and strongly Landau damped.

PACS numbers

75.30.Fv 74.20.Mn 71.28.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.M. Luke,et al., Phys. Rev. B 42 (1990) 7981; T.R. Thurston,et al, Phys. Rev. Lett. 65 (1990) 263.Google Scholar
  2. 2.
    S.-W. Cheong,et al, Phys. Rev. Lett. 67 (1991) 1791; S.M. Hayden,et al, in: K.A. Müller, eds.,Workshop on Phase Separation in Cuprate Superconductors, Erice, Italy, May 6–7, 1992 (World Scientific Pub., Singapore, 1992).Google Scholar
  3. 3.
    J.M. Tranquada,et al, Phys. Rev. B 46 (1992) 5561.Google Scholar
  4. 4.
    C. Jayaprakash, H.R. Krishnamurthy and S. Barker, Phys. Rev. B. 40 (1989) 2610; J. Zaanen and O. Gunnarsson,ibid. 40 (1989) 7391; C.L. Kane, P.A. Lee. T.K. Ng, B. Chakraborty and N. Read,ibid. 41 (1990) 2653; Z.Y. Weng and C.S. Ting,ibid. 42 (1990) 803. H.J. Schulz, Phys. Rev. Lett. 64 (1990) 1445,ibid. 65 (1990) 2462.Google Scholar
  5. 5.
    E. Arrigoni and G.C. Strinati, Phys. Rev. B. 44 (1991) 7455;Google Scholar
  6. 6.
    M. Dzierzawa, Z. Phys. B 86 (1992) 49; F.F. Assaad, Phys. Rev. B. 47 (1993) 7910.Google Scholar
  7. 7.
    B.I. Shraiman and E.D. Siggia, Phys. Rev. Lett. 61 (1988) 467,ibid. 62 (1989) 1564, Phys. Rev. B. 40 (1989) 9162,ibid. 42 (1990) 2485,ibid. 46 (1992) 8305.Google Scholar
  8. 8.
    M.S. Hybertsen, E.B. Stechel, M. Schlüter and D.R. Jennison, Phys. Rev. B 41 (1990) 11068; M.S. Hybertsen, E.B. Stechel, W.M.C. Foulkes and M. Schlüter,ibid. 45 (1992) 10032.Google Scholar
  9. 9.
    D.M. King,et al., Phys. Rev. Lett. 70 (1993) 3159; R.O. Anderson,et al, ibid. 70 (1993) 3163.Google Scholar
  10. 10.
    R. Frésard, M. Dzierzawa and P. Wölfle, Europhys. Lett. 15 (1991) 325.Google Scholar
  11. 11.
    B.I. Halperin and W.M. Saslow, Phys. Rev. B 16 (1977) 2154. D. Forster,Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Frontiers in physics, 47, W.A. Benjamin, Reading, Massachusetts, 1975).Google Scholar
  12. 12.
    J.R. Schrieffer, X.G. Wen and S.C. Zhang, Phys. Rev. B 39 (1989) 11663. J.R. Schrieffer, X.G. Wen and S.C. Zhang, Phys. Rev. B 39 (1989) 11663. A.V. Chubukov and D.M. Frenkel, Phys. Rev. B 46 (1992) 11884.Google Scholar
  13. 13.
    W. Brenig,to be published (1994).Google Scholar
  14. 14.
    W. Brenig and A.P. Kampf, Europhys. Lett. 24 (1993) 679.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Wolfram Brenig
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations