Journal of Materials Science

, Volume 17, Issue 12, pp 3460–3478 | Cite as

Effects of water and other dielectrics on crack growth

  • S. M. Wiederhorn
  • S. W. Freiman
  • E. R. FullerJr
  • C. J. Simmons


Effects of water and a variety of organic liquids on crack-growth rates in soda-lime-silica glass was investigated. When water is present in organic liquids, it is usually the principal agent that promotes subcritical crack growth in glass. In region I, subcritical crack growth is controlled primarily by the chemical potential of the water in the liquid; whereas in region II, crack growth is controlled by the concentration of water and the viscosity of the solution formed by the water and the organic liquid. In region III, where water does not affect crack growth, the slope of the crack-growth curves can be correlated with the dielectric constant of the liquid. It is suggested that these latter results can be explained by electrostatic interactions between the environment and charges that form during the rupture of Si-O bonds.


Polymer Viscosity Dielectric Constant Electrostatic Interaction Organic Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Wiederhorn,J. Amer. Ceram. Soc. 59 (1967) 407.Google Scholar
  2. 2.
    K. Schönert, H. Umhauer andW. Klemm, in Proceedings of the 2nd International Conference on Fracture, Brighten, 1969 (Chapman and Hall, London, 1970) pp. 474–82.Google Scholar
  3. 3.
    S. W. Freiman,J. Amer. Ceram. Soc. 57 (1974) 350.Google Scholar
  4. 4.
    H. Richter, “The Physics of Non-Crystalline Solids”, edited by G. H. Frischat (Trans. Tech. Publications, CH-4711 Aedermannsdorf, Switzerland, 1977) pp. 618–24.Google Scholar
  5. 5.
    C. L. Quackenbush andV. D. Frechette,J. Amer. Ceram. Soc. 61 (1978) 402.Google Scholar
  6. 6.
    S. M. Wiederhorn, H. Johnson, A. M. Diness andA. H. Heuer,ibid. 57 (1974) 336.Google Scholar
  7. 7.
    M. Randall andH. P. Weber,J. Phys. Chem. 44 (1940) 917.Google Scholar
  8. 8.
    H. R. Null, “Phase Equilibrium in Process Design” (Wiley-Interscience, New York, 1970).Google Scholar
  9. 9.
    S. M. Wiederhorn, in “Fracture Mechanics of Ceramics”, Vol. 2, “Microstructure Materials and Applications,” edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1974) pp. 613–46.Google Scholar
  10. 10.
    B. J. Pletka, E. R. Fuller Jr andB. G. Koepke, in “Fracture Mechanics Applied to Brittle Materials”, ASTM STP 678, edited by S. W. Freiman, (American Society for Testing and Materials, Philadelphia, 1979) pp. 19–37.Google Scholar
  11. 11.
    T. A. Michalske andV. D. Frechette,J. Amer. Ceram. Soc. 63 (1980) 603.Google Scholar
  12. 12.
    S. W. Freiman, D. R. Mulville andP. W. Mast,J. Mater. Sci. 8 (1973) 1527.Google Scholar
  13. 13.
    S. M. Wiederhorn, E. R. Fuller Jr andR. Thomson,Met. Sci. 14 (1980) 450.Google Scholar
  14. 14.
    S. Glasstone, K. J. Laidler andH. Eyring, “Theory of Rate Processes” (McGraw-Hill, New York, 1941).Google Scholar
  15. 15.
    G. Kohnstam, in “Progress in Reaction Kinetics”, edited by G. Porter (Pergamon Press, London, 1970) pp. 355–408.Google Scholar
  16. 16.
    W. J. Moore, “Physical Chemistry” (Prentice-Hall, Englewood Cliffs, N.J., 1972).Google Scholar
  17. 17.
    C. E. Inglis,Trans. Inst. Naval Archit. 55 (1913) 219.Google Scholar
  18. 18.
    R. J. Charles andW. B. Hillig, in the Symposium on Mechanical Strength of Glass and Ways of Improving It, Florence, Italy, 25–29 September, 1961 (Union Scientifique Continentale du Verre, Charleroi, Belgium, 1962) pp. 511–27.Google Scholar
  19. 19.
    R. E. Mould,J. Amer. Ceram. Soc. 44 (1961) 481.Google Scholar
  20. 20.
    J. E. Ritter Jr andC. L. Sherburne,J. Amer. Ceram. Soc. 54 (1971) 601.Google Scholar
  21. 21.
    P. A. Johnson andA. L. Babb,Chem. Rev. 56 (1956) 387.Google Scholar
  22. 22.
    J. O'M. Bockris andA. K. N. Reddy, “Modern Electrochemistry”, Vol. 1 (Plenum Press, New York, 1970).Google Scholar
  23. 23.
    S. D. Hamann, in “High Pressure Physics and Chemistry”, Vol. 2, edited by R. S. Bradley (Academic Press, New York, 1963) pp. 163–207.Google Scholar
  24. 24.
    E. Whalley,Adv. Phys. Org. Chem. 2 (1964) 93.Google Scholar
  25. 25.
    C. A. Eckert,Ann. Rev. Phys. Chem. 23 (1972) 239.Google Scholar
  26. 26.
    K. A. Akhmed-Zade, V. V. Baptizmanskii, V. A. Zakrevskii andE. E. Tomashevskii,Sov. Phys. Solid State 14 (1972) 351.Google Scholar
  27. 27.
    R. E. Benson andJ. E. Castle,J. Phys. Chem. 62 (1958) 840.Google Scholar
  28. 28.
    W. A. Weyl,Research 3 (1950) 230.Google Scholar
  29. 29.
    R. S. Bradley, in “High Pressure Physics and Chemistry”, Vol. 2, edited by R. S. Bradley (Academic Press, New York, 1963) pp. 325–37.Google Scholar
  30. 30.
    J. H. Colwell, “Stable Pressure Transducer,” National Bureau of Standards Report, NBSIR 76-1116, July (1976).Google Scholar
  31. 31.
    S. M. Wiederhorn andL. H. Bolz,J. Amer. Ceram. Soc. 53 (1970) 543.Google Scholar
  32. 32.
    S. W. Freiman,ibid. 58 (1975) 339.Google Scholar
  33. 33.
    Idem, ibid. 58 (1975) 340.Google Scholar
  34. 34.
    P. C. Paris andG. C. Sih, in “Fracture Toughness Testing and Its Applications”, ASTM STP 381 (American Society for Testing and Materials, Philadelphia, 1965) pp. 80–81.Google Scholar
  35. 35.
    G. I. Barenblatt,Adv. Appl. Mech. 7 (1962) 55.Google Scholar
  36. 36.
    G. K. Batchelor, “An Introduction to Fluid Dynamics” (Cambridge University Press, Cambridge, 1967).Google Scholar
  37. 37.
    I. S. Gradshteyn andI. M. Ryzhik, “Table of Integrals, Series, and Products” (Academic Press, New York, 1980) p. 527 (formula 4.224.11).Google Scholar
  38. 38.
    J. D. Jackson, “Classical Electrodynamics” (Wiley, New York, 1962).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • S. M. Wiederhorn
    • 1
  • S. W. Freiman
    • 1
  • E. R. FullerJr
    • 1
  • C. J. Simmons
    • 1
  1. 1.National Bureau of StandardsWashington, D.C.USA

Personalised recommendations