Journal of Low Temperature Physics

, Volume 100, Issue 3–4, pp 281–307 | Cite as

The determination of the energy barrier for phase slips in superfluid4He

  • J. Steinhauer
  • K. Schwab
  • Yury Mukharsky
  • J. C. Davis
  • Richard E. Packard
Articles

Abstract

The velocity dependence of the energy barrier for vortex creation in microscopic apertures is determined. When compared to results from other laboratories, the energy barrier seems to be a universal function of velocity. This universality suggests that the vortex nucleation process is independent of the microscopic surface structure of the aperture. In DC flow experiments, the vortices are nucleated at rates up to 700kHz. In single phase slip experiments, the rate of nucleation is on the order of 10 Hz. Each of these types of experiments gives the energy barrier in a different velocity regime. The energy barrier has more curvature, as a function of velocity, than can be accounted for by the half-ring model of vortex nucleation.

Keywords

Vortex Magnetic Material Energy Barrier Surface Structure Single Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Feynman, inProg. Low Temp. Phys., C. J. Gorter, ed. (North-Holland, Amsterdam, 1955), Vol.1, Ch.2, p. 17.Google Scholar
  2. 2.
    A recent review is given inQuantized Vortices in He II, R. J. Donnelly (Cambridge Univ. Press, New York, 1991).Google Scholar
  3. 3.
    W. I. Glaberson and R. J. Donnelly,Phys. Rev. 141, 208 (1966).Google Scholar
  4. 4.
    K. W. Schwarz,Phys. Rev. Lett. 64, 1130 (1990).Google Scholar
  5. 5.
    J. R. Clow and J. D. Reppy,Phys. Rev. Lett. 19, 291 (1967).Google Scholar
  6. 6.
    W. F. Vinen, inLiquid Helium, G. Careri, ed. (Academic Press, New York, 1963), p. 336.Google Scholar
  7. 7.
    S. V. Iordanskii,Sov. Phys. JETP 21, 467 (1965).Google Scholar
  8. 8.
    J. S. Langer and Michael E. Fisher,Phys. Rev. Lett. 19, 560 (1967).Google Scholar
  9. 9.
    J. S. Langer and J. D. Reppy, inProg. Low Temp. Phys., C. J. Gorter, ed. (North-Holland, Amsterdam, 1970), Vol. 6, Ch. 1, p. 1.Google Scholar
  10. 10.
    C. M. Muirhead, W. F. Vinen, and R. J. Donnelly,Phil. Trans. R. Soc. Land. A 311, 433 (1984).Google Scholar
  11. 11.
    P. C. Hendryet al., Phys. Rev. Lett. 60, 604 (1988).Google Scholar
  12. 12.
    George B. Hess,Phys. Rev. Lett. 27, 977 (1971).Google Scholar
  13. 13.
    For smaller temperatures than those discussed here, the fluctuations may be quantum in nature, as reported in J. C. Davis, J. Steinhauer, K. Schwab, Yu. M. Mukharsky, A. Amar, Y. Sasaki, and R. E. Packard,Phys. Rev. Lett. 69, 323 (1992), and Ref. 14.Google Scholar
  14. 14.
    G. G. Ihas, O. Avenel, R. Aarts, and R. Salmelin,Phys. Rev. Lett. 69, 327 (1992).Google Scholar
  15. 15.
    E. Varoquaux, W. Zimmermann Jr., and O. Avenel, inExcitations of Two and Three Dimensional Quantum Fluids, A. F. G. Wyatt and H. J. Lauter, eds. (Plenum, New York, 1992).Google Scholar
  16. 16.
    O. Avenel, G. G. Ihas, and E. Varoquaux,J. Low Temp. Phys. 93(5/6), 1031 (1993).Google Scholar
  17. 17.
    P. W. Anderson,Rev. Mod. Phys. 38, 298 (1966).Google Scholar
  18. 18.
    O. Avenel and E. Varoquaux,Phys. Rev. Lett. 55, 2704 (1985).Google Scholar
  19. 19.
    S. Burkhart, M. Bernard, O. Avenel, and E. Varoquaux,Phys. Rev. Lett. 72, 380 (1994); K. W. Schwarz,Phys. Rev. Lett. 71, 259 (1993).Google Scholar
  20. 20.
    Reaction rate theory is reviewed in P. Hänggi, P. Talkner, and M. Borkovec,Rev. Mod. Phys. 62, 251 (1990).Google Scholar
  21. 21.
    H. J. Paik,J. Appl. Phys. 47, 1168 (1976); Our SQUID based displacement detector has an RMS resolution of 1.6 × 10−13 m Hz−1/2.Google Scholar
  22. 22.
    B. P. Beecken and W. Zimmermann Jr.,Phys. Rev. B 35, 74 (1987).Google Scholar
  23. 23.
    TheQ factor is determined by second viscosity, heat flow due to the thermomechanical effect, and normal fluid viscosity.Google Scholar
  24. 24.
    A. Amar, Y. Sasaki, R. Lozes, J. C. Davis, and R. E. Packard,Phys. Rev. Lett. 68, 2624 (1992).Google Scholar
  25. 25.
    O. Avenel, M. Bernard, S. Burkhart, and E. Varoquaux, To be published inPhysica B 210, May 1995.Google Scholar
  26. 26.
    Another miniaturized cell is described in O. Avenel and E. Varoquaux,Proc. XIth Int'l. Cryogenic Eng. Conf., p. 587 (1986).Google Scholar
  27. 27.
    K. Schwab, to be published.Google Scholar
  28. 28.
    Vibration and Sound, Philip M. Morse (Acoustical Society of America, United States of America, 1991), p. 234.Google Scholar
  29. 29.
    A. Amar, R. L. Lozes, Y. Sasaki, J. C. Davis, and R. E. Packard,J. Vac. Sci. Technol. B 11(2), 259 (1993).Google Scholar
  30. 30.
    The surface of the aperture appears smooth in an electro-micrograph picture resolving 40 nm.Google Scholar
  31. 31.
    The thermomechanical effect slightly increases the frequency above 1 K. At 1.4 K, whereQ = 6, the natural frequency is 44.1 Hz.Google Scholar
  32. 32.
    We use these definitions to permit direct comparison with Ref. 15.Google Scholar
  33. 33.
    E. Varoquaux, M. W. Meisel, and O. Avenel,Phys. Rev. Lett. 57, 2291 (1986).Google Scholar
  34. 34.
    B. P. Beecken and W. Zimmermann Jr.,Phys. Rev. B 35, 1630 (1987).Google Scholar
  35. 35.
    M. Bonaldi, S. Vitale, and M. Cerdonio,Phys. Rev. B 42, 9865 (1990).Google Scholar
  36. 36.
    Yorke J. Brown and George B. Hess,J. Low Temp. Phys. 49, 267 (1982).Google Scholar
  37. 37.
    In the notation of Ref. 15, (∂E*/∂v)¦vc ac =−E 0/vc0.Google Scholar
  38. 38.
    R. E. Packard and S. Vitale,Phys. Rev. B 45, 2512 (1992).Google Scholar
  39. 39.
    G. M. Shifflett and G. B. Hess,J. Low Temp. Phys. 98(5/6) (1995).Google Scholar
  40. 40.
    J. Steinhauer, S. Backhaus, and Richard E. Packard, to be published. Also, J. Steinhauer, Ph.D. Dissertation, University of California, Los Angeles, 1995.Google Scholar
  41. 42.
    D. D. Awschalom and K. W. Schwarz,Phys. Rev. Lett. 52, 49 (1984).Google Scholar
  42. 43.
    The possibility that intrinsic processes are not responsible for large scale critical velocities is suggested in Ref. 6.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • J. Steinhauer
    • 1
  • K. Schwab
    • 1
  • Yury Mukharsky
    • 1
  • J. C. Davis
    • 1
  • Richard E. Packard
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaBerkeley

Personalised recommendations