Space Science Reviews

, Volume 74, Issue 3–4, pp 259–268 | Cite as

Cosmological variability of fundamental physical constants

  • D. A. Varshalovich
  • A. Y. Potekhin

Abstract

Gamow was one of the pioneers who studied the possible variability of fundamental physical constants. Some versions of modern Grand Unification theories do predict such variability. The paper is concerned with three of the constants: the fine-structure constant α, the ratio of the proton massmp to the electron massme, and the ratio of the neutron massmn tome. It is shown on the basis of the quasar spectra analysis, that all the three constants revealed no statistically significant variation over the last 90% of the life time of the Universe. At the 2δ significance level, the following upper bounds are obtained for the epoch corresponding to the cosmological redshiftsz∼2–3: Δα/α<1.5×10−3, Δmp/mp<2×10−3, and Δm/m<3×10−4, where Δx is a possible deviation of a quantityx from its present value,m=mp+mn, and the nucleon masses are in units ofme. (According to new observational data which became known most recently, Δmp/mp<2×10−4) In addition a possible anisotropy of the high-redshift fine splitting over the celestial sphere is checked. Within the relative statistical error 3δ < 1% the values of α turned out to be the same in various quadrants of the celestial sphere, which corresponds to their equality in causally disconnected areas. However, at the 2δ level a tentative anisotropy of estimated Δα/α values is found in directions that approximately coincide with the direction of the relic microwave background anisotropy.

The revealed constraints serve as criteria for selection of those theoretical models which predict variation of α,mp ormn with the cosmological time.

Key words

Cosmology Quasar Spectra Physical Constants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpher, R. A.: 1973,Am. Sci. 61, 52Google Scholar
  2. Bahcall, J. and Schmidt, M.: 1967,Phys. Rev. Lett. 19, 1294Google Scholar
  3. Bahcall, J., Sargent, W. L. W., and Schmidt, M.: 1967,Astrophys. J. 149, L11Google Scholar
  4. Brown, R. L. and Vanden Bout, P. A.: 1991,Astron. J. 102, 1956Google Scholar
  5. Chechev, V. P. and Kramarovsky, Ya. M.: 1978,Radiactivity and Evolution of the Universe, Nauka: Moscow (in Russian)Google Scholar
  6. Huber, K. P. and Herzberg, G.: 1979,Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van NostrandGoogle Scholar
  7. Chodos, A. and Detweiler, S.: 1980,Phys. Rev. D 21, 2167Google Scholar
  8. Dirac, P. A. M.: 1937,Nature 139, 323Google Scholar
  9. Dyson, F. J.: 1972, ‘The fundamental constants and their time variation” in A. Salam and E. P. Wigner, ed(s).,Aspects of Quantum Theory Cambridge Univ.: Cambridge, 213Google Scholar
  10. Foltz, C. B., Chaffee, F. H., and Black, J. H.: 1988,Astrophys. J. 324, 267Google Scholar
  11. Freund, P.: 1982,Nucl. Phys. B 209, 146Google Scholar
  12. Gamow, G.: 1967,Phys. Rev. Lett. 19, 759Google Scholar
  13. Kolb, E. W., Perry, M. J., and Walker, T. P.: 1986,Phys. Rev. D 33, 869Google Scholar
  14. Lanzetta, K. M., Baldwin, J. A., Potekhin, A. Y., Varshalovich, D. A., Williger, J. M., Carswell, R. F.: 1995, ‘An observational limit to cosmological variation of the proton-to-electron mass ratio’ in W. Voges, ed(s).,17th Texas Symp. on Relativistic Astrophys., MPE Reports: Garching bei Münich,Google Scholar
  15. Lehmann, E. L.: 1983,Theory of Point Estimation, Wiley: New YorkGoogle Scholar
  16. Levshakov, S. A.: 1992,ESO Conf. Proc. 40, 139Google Scholar
  17. Levshakov, S. A.: 1993,Vistas Astron. 37, 535Google Scholar
  18. Lu, L., Wolfe, A. M., Turnshek, D. A., and Lanzetta, K. M.: 1993,Astrophys. J. Suppl. Ser. 84, 1Google Scholar
  19. Maeda, K.-I.: 1988,Mod. Phys. Lett. A 3, 243Google Scholar
  20. Marciano, W. J.: 1984,Phys. Rev. Lett. 52, 489Google Scholar
  21. Milne, E.: 1937,Proc. R. Soc. A 158, 324Google Scholar
  22. Petitjean, P., Rauch, M., and Carswell, R. F.: 1994,Astron. Astrophys. 291, 29Google Scholar
  23. Potekhin, A. Y. and Varshalovich, D. A.: 1994,Astron. Astrophys. Suppl. Ser. 104, 89 (Paper I)Google Scholar
  24. Rowan-Robunson, M., Broadhurst, T., Lawrence, A., Mc Mahon, R. G., Lonodale, C. J., Oliver, S. J., Taylor, A. N., Hacking, P. B., Conrow, T., Saunders, W., Ellis, R. S., Efstathiou, G. P., and Condon, J. J.: 1991,Nature 351, 719Google Scholar
  25. Savedoff, M. P.: 1956,Nature 178, 688Google Scholar
  26. Sisterna, P. and Vucetich, H.: 1990,Phys. Rev. D 41, 1034Google Scholar
  27. Teller, E.: 1948,Phys. Rev. 73, 801Google Scholar
  28. Tubbs, A. D. and Wolfe, A. M.: 1980,Astrophys. J. 236, L105Google Scholar
  29. Valtts, I. E., Khersonskij, V. K., Slysh, V. I., Guélin, M., Chernicharo, J., and Boissé, P.: 1993,Astron. Zh. 70, 667Google Scholar
  30. Varshalovich, D. A. and Levshakov, S. A.: 1993,JETP Lett. 58, 237Google Scholar
  31. Varshalovich, D. A. and Potekhin, A. Y.: 1994,Pis'ma Astron. Zh. (Astronomy Letters) 20, 883 (Paper II)Google Scholar
  32. Wolfe, A. M., Brown, R. L., and Roberts, M. S.: 1976,Phys. Rev. Lett. 37, 179Google Scholar
  33. Wolfe, A. M., Turnshek, D. A., Lanzetta, K. M., and Lu, L.: 1993,Astrophys. J. 404, 480Google Scholar
  34. Wu, Y. and Wang, Z.: 1986,Phys. Rev. Lett. 57, 1978Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • D. A. Varshalovich
    • 1
  • A. Y. Potekhin
    • 1
  1. 1.Ioffe Physical-Technical InstituteSt-PetersburgRussia

Personalised recommendations