Space Science Reviews

, Volume 71, Issue 1–4, pp 207–229

The WIND magnetic field investigation

  • R. P. Lepping
  • M. H. Acũna
  • L. F. Burlaga
  • W. M. Farrell
  • J. A. Slavin
  • K. H. Schatten
  • F. Mariani
  • N. F. Ness
  • F. M. Neubauer
  • Y. C. Whang
  • J. B. Byrnes
  • R. S. Kennon
  • P. V. Panetta
  • J. Scheifele
  • E. M. Worley
Article

Abstract

The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s−1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s−1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0–10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (‘detail’ in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acuña, M. H.: 1974,IEEE Trans. Magnetics MAG-10, 519.Google Scholar
  2. Acuña, M. H. and Ness, N. F.: 1976a, in T. Gehrels (ed.),Jupiter, University of Arizona Press, Tucson, p. 830.Google Scholar
  3. Acuña, M. H. and Ness, N. F.: 1976b,J. Geophys. Res. 81, 2917.Google Scholar
  4. Baker, D. N., Akasofu, S. I., Baumjohann, W., Bieber, J. W., Fairfield, D. H., Hones, E. W., Jr., Mauk, B. H., McPherron, R. L., and Moore, T. E.: 1984,Solar Terrestrial Physics—Present and Future, 8–1 to 8–55.Google Scholar
  5. Burlaga, L. F.: 1991, in L. Lanzerotti, R. Schwenn, and E. Marsch (eds.),Physics of the Inner Heliosphere, Ch. 6, Springer-Verlag, New York.Google Scholar
  6. Burlaga, L. F., Sittler, E. C., Jr., Mariani, F., and Schwenn, R.: 1981,J. Geophys. Res. 86, 6673.Google Scholar
  7. Burlaga, L. F., Behannon, K. W., and Klein, L. W.: 1987,J. Geophys. Res. 92, 5725.Google Scholar
  8. Burlaga, L. F., Lepping, R. P., and Jones, J.: 1990, in C. T. Russell, E. R. Priest, and L. C. Lee (eds.),Geophys. Monogr. Ser., Physics of Flux Ropes, AGU, Washington, D.C., Vol. 58, p. 373.Google Scholar
  9. Dessler, A. J.: 1958,J. Geophys. Res. 63, 405.Google Scholar
  10. Fairfield, D. H.: 1991, ‘Advances in Magnetospheric Storm and Substorm Research: 1989–1991’, Review presented at the IAGA Meeting Vienna, Austria.Google Scholar
  11. Farrell, W. M., Thompson, R. F., Lepping, R. P., and Byrnes, J. B.: 1994,IEEE Magnetics, in press.Google Scholar
  12. Farrugia, C. J., Freeman, M. P., and Burlaga, L. F.: 1992,Proceedings of the International Conference on Substorms (ICS-1), Kiruna, Sweden ESA SP-335, p. 371.Google Scholar
  13. Farrugia, C. J., Richardson, I. G., Burlaga, L. F., Osherovich, V. A., and Lepping, R. P.: 1993a,J. Geophys. Res. 98, 15497.Google Scholar
  14. Farrugia, C. J., Fitzenreiter, R. J., Burlaga, L. F., Erkaev, N. V., Osherovich, V. A., Biemat, H. K., and Fazakerly, A.: 1993b,Adv. Space Res. 14(7), 105.Google Scholar
  15. Farrugia, C. J., Freeman, M. P., and Burlaga, L. F., Takahashi, K.: 1993c,J. Geophys. Res. 98, 7657.Google Scholar
  16. Farrugia, C. J., Sandholt, P. E., and Burlaga, L. F.: 1993d,J. Geophys. Res., submitted.Google Scholar
  17. Feldman, W. C., Tokar, R. L., Birn, J., Hones, E. W., Jr., Bame, S. J., and Russell, C. T.: 1987,J. Geophys. Res. 92, 83.Google Scholar
  18. Freeman, M. P., Farrugia, C. J., Burlaga, L. F., Lepping, R. P., and Greenspan, M.: 1993,J. Geophys. Res. 98, 7633.Google Scholar
  19. Gloeckler, G., Geiss, J., Fisk, L., Glavin, A., and Ipavich, F.: 1993,Detection of Interstellar Pick-up Hydrogen in the Solar System, submitted.Google Scholar
  20. Goertz, C. K. and Smith, R. A.: 1989,J. Geophys. Res. 94, 6581.Google Scholar
  21. Goldstein, H.: 1983,Solar Wind Five, NASA Conference Publ. 2280, 731.Google Scholar
  22. Gonzalez, W. D. and Tsurutani, B. T.: 1987,Planetary Space Sci. 35, 1101.Google Scholar
  23. Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame, S. J.: 1991,J. Geophys. Res. 96, 7831.Google Scholar
  24. Hilchenbach, M.et al.: 1992,COSPAR, Program Book, p. 260.Google Scholar
  25. Joselyn, J. A. and Tsurutani, B. T.: 1990,EOS, Transactions of Am. Geophys. Union, p. 1809.Google Scholar
  26. Kahler, S. W.: 1992,Ann. Rev. Astron. Astrophys. 30, 113.Google Scholar
  27. Kokubun, S.et al.: 1990,GEOTAIL Interim Report, Institute of Space and Astronautical Science, p. 55.Google Scholar
  28. Lee, L. C., Yan, M., and Hawkins, J. G.: 1991,Geophys. Res. Letters 18, 381.Google Scholar
  29. Lee, M. A. and Ip, W. H.: 1987,J. Geophys. Res. 92, 11, 041.Google Scholar
  30. Lepping, R. P., Vinas, A. F., Lazarus, A. J., Sugiura, M., Araki, T., Kokubun, S., Stahara, S. S., and Spreiter, J. R.: 1992,EOS, Transactions of Am. Geophys. Union, p. 251.Google Scholar
  31. Lui, A. T. Y.: 1991,J. Geophys. Res. 96, 1849.Google Scholar
  32. Mish, W. H. and Lepping, R. P.: 1976, NASA/GSFC X-694-76-158.Google Scholar
  33. Moldwin, M. B. and Hughes, W. J.: 1991,EOS, Transactions AGU, p. 242 (SME32E-3).Google Scholar
  34. Moldwin, M. B. and Hughes, W. J.: 1992,Geophys. Res. Letters 19, No. 11, 1081.Google Scholar
  35. Ness, N. F.: 1970,Space Sci. Rev. 11, 111.Google Scholar
  36. Ness, N. F., Behannon, K. W., Lepping, R. P., and Schatten, K. H.: 1971,J. Geophys. Res. 76, 3564.Google Scholar
  37. Panetta, P. V. and Acuña, M. H.: 1991,WIND MFI FFTP Processor Requirements Document, Rev. 10.Google Scholar
  38. Panetta, P. V.: 1992a,WIND MFI Telemetry Bits Definition Document, Rev. 1.Google Scholar
  39. Panetta, P. V.: 1992b,WIND MFI Flight Software Description Document, Rev. 2.Google Scholar
  40. Richardson, I. G. et al.: 1987,J. Geophys. Res. 92, 9997.Google Scholar
  41. Slavin, J. A., Lepping, R. P., and Baker, D. N.: 1990,Geophys. Res. Letters 17, 913.Google Scholar
  42. Smith, E. J.: 1993,EOS Transactions AGU (Abstract SH 11 A-9) 234.Google Scholar
  43. Smith, E. J., Slavin, J. A., Zwickl, R. D., and Bame, S. J.: 1986,Solar Wind-Magnetosphere Coupling, Tokyo, p. 345.Google Scholar
  44. Sugiura, M.: 1965,Radio Science 69D, 1133.Google Scholar
  45. Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S.-I., and Smith, E. J.: 1988,J. Geophys. Res. 93, 8519.Google Scholar
  46. Tsurutani, B. T., Gonzalez, W. D., Tang, F., and Lee, Y. T.: 1992,Geophys. Res. Letters 19, 73.Google Scholar
  47. Vinas, A. F. and Scudder, J. D.: 1986,J. Geophys. Res. 91, 39.Google Scholar
  48. Whang, Y. C.: 1991,Astrophys. J. 377, 255.Google Scholar
  49. Wilken, B., Goertz, C. K., Baker, D. N., Higbie, P. R., and Fritz, T. A.: 1982,J. Geophys. Res. 87, 5901.Google Scholar
  50. Wilson, C. R. and Sugiura, M.: 1961,J. Geophys. Res. 66, 4097.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • R. P. Lepping
    • 1
  • M. H. Acũna
    • 1
  • L. F. Burlaga
    • 1
  • W. M. Farrell
    • 1
  • J. A. Slavin
    • 1
  • K. H. Schatten
    • 2
  • F. Mariani
    • 3
  • N. F. Ness
    • 4
  • F. M. Neubauer
    • 5
  • Y. C. Whang
    • 6
  • J. B. Byrnes
    • 1
  • R. S. Kennon
    • 1
  • P. V. Panetta
    • 1
  • J. Scheifele
    • 1
  • E. M. Worley
    • 1
  1. 1.Laboratory for Extraterrestrial PhysicsNASA/Goddard Space Flight CenterGreenbeltUSA
  2. 2.Division of Atmospheric SciencesNational Science FoundationWashington, DCUSA
  3. 3.Dipartimento di FisicaUniversita' Tor VergataRomaItaly
  4. 4.Bartol Research instituteUniversity of DelawareNewarkUSA
  5. 5.Institut für Geophysics und Meteorlogie der Universität zu KölnKöln-41Germany
  6. 6.Department of Mechanical EngineeringThe Catholic University of AmericaWashington, DCUSA

Personalised recommendations