Advertisement

Letters in Mathematical Physics

, Volume 35, Issue 4, pp 351–358 | Cite as

Linear connections on the quantum plane

  • M. Dubois-Violette
  • J. Madore
  • T. Masson
  • J. Mourad
Article

Abstract

A general definition has been proposed recently of a linear connection and a metric in noncommutative geometry. It is shown that to within normalization there is a unique linear connection on the quantum plane and there is no metric.

Mathematical Subject Classifications (1991)

17B37 53B05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chamseddine, A. H., Felder, G. and Fröhlich J., Gravity in non-commutative geometry,Comm. Math. Phys. 155, 205 (1993).Google Scholar
  2. 2.
    Connes, A., Non-Commutative Differential Geometry,Publ. Inst. des Hautes Etudes Scientifique 62, 257 (1986).Google Scholar
  3. 3.
    Connes, A.,Noncommutative Geometry, Academic Press, New York, 1994.Google Scholar
  4. 4.
    Dubois-Violette, M., Dérivations et calcul différentiel non commutatif,C.R. Acad. Sci. Paris Série I 307, 403 (1988).Google Scholar
  5. 5.
    Dubois-Violette, M. and Michor, P., Dérivations et calcul différentiel non commutatif II,C.R. Acad. Sci. Paris Série I 319, 927 (1994).Google Scholar
  6. 6.
    Dubois-Violette, M. and Michor, P., Connections on central bimodules, Preprint LPTHE Orsay 94/100, 1995.Google Scholar
  7. 7.
    Koszul, J. L., Lectures on fibre bundles and differential geometry, Tata Institute of Fundamental Research, Bombay, 1960.Google Scholar
  8. 8.
    Maltsiniotis, G., Le langage des espaces et des groupes quantiques,Comm. Math. Phys. 151, 275 (1993).Google Scholar
  9. 9.
    Manin, Yu. I., Multiparametric quantum deformations of the general linear supergroup,Comm. Math. Phys. 123, 163 (1989).Google Scholar
  10. 10.
    Mourad, J., Linear connections in non-commutative geometry,Classical Quantum Gravity, to appear.Google Scholar
  11. 11.
    Pusz, W. and Woronowicz, S. L., twisted second quantization,Rep. Math. Phys. 27, 231 (1989).Google Scholar
  12. 12.
    Wess, J. and Zumino B., Covariant differential calculus on the quantum hyperplane,Nuclear Phys. B (Proc. Suppl.) 18, 302 (1990).Google Scholar
  13. 13.
    Woronowicz, S. L., Twisted SU(2) group. An example of a non-commutative differential calculus,Publ. RIMS, Kyoto Univ. 23, 117 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • M. Dubois-Violette
    • 1
  • J. Madore
    • 1
  • T. Masson
    • 1
  • J. Mourad
    • 2
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité de Paris-SudOrsayFrance
  2. 2.Laboratoire de Modèles de Physique Mathématique Parc de GrandmontUniversité de ToursToursFrance

Personalised recommendations