Letters in Mathematical Physics

, Volume 35, Issue 2, pp 91–97

Projective quantum spaces

  • U. Meyer
Article

Abstract

Associated to the standard SUq(n) R-matrices, we introduce quantum spheresSq2n-1, projective quantum spaces ℂℙqn-1, and quantum Grassmann manifoldsGk(ℂqn). These algebras are shown to be homogeneous spaces of standard quantum groups and are also quantum principle bundles in the sense of T. Brzeziński and S. Majid.

Mathematics Subject Classifications (1991)

81R50 14M15 14M17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brzeziński, T. and Majid, S.:Comm. Math. Phys. 157, 591 (1993).Google Scholar
  2. 2.
    Chari, V. and Pressley, A.:A Guide to Quantum Groups, CUP, Cambridge, 1994.Google Scholar
  3. 3.
    Lakshmibai, V. and Reshetikhin, N.:CR Acad. Sci. Paris I 313 (3), 121 (1991).Google Scholar
  4. 4.
    Majid, S.:Internat. J. Modern Phys. A 5, 1 (1990).Google Scholar
  5. 5.
    Majid, S.: M.-L. Ge and H. J. de Vega (eds),Proc. 5th Nankai Workshop, World Scientific, Singapore, 1992.Google Scholar
  6. 6.
    Majid, S.:J. Math. Phys. 34, 1176 (1993).Google Scholar
  7. 7.
    Majid, S.:Foundations of Quantum Group Theory, CUP, Cambridge (to be published).Google Scholar
  8. 8.
    Podle\(\begin{array}{*{20}c} ` \\ s \\ \end{array} \), P.:Lett. Math. Phys. 14, 193 (1987).Google Scholar
  9. 9.
    Reshetikhin, N., Takhtadzhyan, L., and Faddeev, L.:Leningrad Math. J. 1(1), 193 (1990).Google Scholar
  10. 10.
    Taft, E. and Towber, J.:J. Algebra 142, 1 (1991).Google Scholar
  11. 11.
    Woronowicz, S. L.:Publ. RIMS 23, 117 (1987).Google Scholar

Copyright information

© U. Meyer 1995

Authors and Affiliations

  • U. Meyer
    • 1
  1. 1.DAMTP, University of CambridgeCambridgeU.K.

Personalised recommendations