Letters in Mathematical Physics

, Volume 27, Issue 2, pp 123–131 | Cite as

On the freund-witten adelic formula for Veneziano amplitudes

  • V. S. Vladimirov
Article

Abstract

On the basis of the analysis of the adele group (Tate's formula), a regularization for the divergent infinite product ofp-adic Г-functions
$$\Gamma _p (\alpha ) = \frac{{1 - p^{\alpha - 1} }}{{[ - p^{ - \alpha } }}$$
is proposed, and the adelic formula is proved
$$reg\coprod\limits_{p = 2}^\infty {\Gamma _p (\alpha )} = \frac{{\zeta (\alpha )}}{{\zeta (1 - \alpha )}}$$
whereζ(α) is the Riemannζ-function.

Mathematics Subject Classifications (1991)

11R56 11M41 81T30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freund, P. G. O. and Witten, E.,Phys. Lett. B 199, 191 (1987).Google Scholar
  2. 2.
    Volovich, I. V.,Lett. Math. Phys. 16, 61 (1988).Google Scholar
  3. 3.
    Aref'eva, I. Ya., Dragović, B. G., and Volovich, I. V.,Phys. Lett. B 209, 445 (1988).Google Scholar
  4. 4.
    Borevich, Z. I. and Shafarevich, I. R.,Number Theory, Academic Press, New York, 1966.Google Scholar
  5. 5.
    Shikhof, W. H.,Ultrametric Calculus. An Introduction to p-adic Analysis, Cambridge Univ. Press, 1984.Google Scholar
  6. 6.
    Vladimirov, V. S., Volovich, I. V., and Zelenov, E. I.,p-Adic Analysis in Mathematical Physics, World Scientific, Singapore, 1992.Google Scholar
  7. 7.
    Gelfand, I. M., Graev, M. I., and Pitatetskii-Shapiro, I. I.,Representation Theory and Automorphic Functions, Saunders, Philadelphia, 1969.Google Scholar
  8. 8.
    Gelfand, I. M. and Silov, G. E.,Generalized Functions and Operations on Them, Vol. 1, Academic Press, New York, 1964.Google Scholar
  9. 9.
    Volovich, I. V.,Classical Quantum Gravity 4, 83 (1987).Google Scholar
  10. 10.
    Volovich, I. V.,Theoret. Math. Phys. 71, 337 (1987).Google Scholar
  11. 11.
    Freund, P. G. O. and Olson, M.,Phys. Lett. B 199, 186 (1987).Google Scholar
  12. 12.
    Frampton, P. H. and Okada, Y.,Phys. Rev. Lett. 60, 484 (1988).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • V. S. Vladimirov
    • 1
  1. 1.Steklov Mathematical InstituteMoscowRussia

Personalised recommendations