Virchows Archiv A

, Volume 412, Issue 5, pp 399–411 | Cite as

Multiple peptide production and presence of general neuroendocrine markers detected in 12 cases of human phaeochromocytoma and in mammalian adrenal glands

  • Gerhard W. Hacker
  • Anne E. Bishop
  • Giorgio Terenghi
  • Ian M. Varndell
  • John Aghahowa
  • Ken Pollard
  • Josef Thurner
  • Julia M. Polak


In this study, antibodies to a range of markers of neuroendocrine differentiation were evaluated for their use in the histopathological assessment and characterisation of phaeochromocytomas. Routinely processed wax blocks from eleven adrenal phaeochromocytomas (10 benign and 1 malignant) and one benign phaeochromocytoma of the urinary bladder were investigated. In addition to these tumours, normal human, cat and piglet adrenal glands were examined. In the phaeochromocytomas, immunostaining was obtained with 21 of the 25 antisera used. Of the general neuroendocrine markers, neuron-specific enolase was found in all tumours, and chromogranin and protein gene-product 9.5 in most of the cases. A range of regulatory peptide immunoreactivities could be demonstrated, such as enkephalin, neuropeptide tyrosine (NPY), 7B2, galanin and vasoactive intestinal polypeptide (VIP). In addition, two peptides were found which have not been reported previously in these tumours, peptide histidine methionine (PHM) and the cryptic fragment of the precursor encoding VIP. Co-localisation studies revealed that peptides derived from the same precursor or peptide family were found in the same tumour cells (e.g. VIP and PHM, NPY and its C-flanking peptide CPON).

In the normal adrenal medulla, all the peptides previously reported to be present could be demonstrated immunocytochemically. Galanin was present in a subpopulation of cells also immunoreactive for enkephalin. Neuropeptide tyrosine and CPON were demonstrated in another subpopulation. Occasionally, cells were found to contain all four antigen immunoreactivities. Using antisera to enzymes involved in catecholamine synthesis, galanin was found to be present in noradrenalin-containing cells. The study demonstrates the presence of various antigens in chromaffin tissue of the adrenal gland. A range of substances can also be identified immunocytochemically in phaeochromocytoma tissue, using routinely-processed material.

Key words

Histopathology Immunocytochemistry Phaeochromocytoma Adrenal gland Neuroendocrine markers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian TE, Allen JM, Terenghi G, Bacarese Hamilton AJ, Brown MJ, Polak JM, Bloom SR (1983) Neuropeptide Y in phaeochromocytomas and ganglioneuroblastomas. Lancet ii:540–542Google Scholar
  2. Allen JM, Adrian TE, Polak JM, Bloom SR (1983) Neuropeptide Y (NPY) in the adrenal gland. J Aut Nerv Syst 9:559–563Google Scholar
  3. Bauer FE, Hacker GW, Terenghi G, Adrian TE, Polak JM, Bloom SR (1986) Localisation and molecular forms of galanin in human adrenals: elevated levels in phaeochromocytoma. J Clin Endocrinol Metabol 63:1372–1378Google Scholar
  4. Berelowitz M, Szabo M, Barowsky NH, Arbal ER, Frohman LA (1983) Somatostatin-like immunoreactivity and biological activity is present in a human phaeochromocytoma. J Clin Endocrinol Metabol 56:134–138Google Scholar
  5. Berenyi MR, Singh G, Gloster ES, Davidson M, Woldenberg DH (1977) ACTH-producing phaeochromocytoma. Arch Pathol Lab Med 101:31–35Google Scholar
  6. Bishop AE, Polak JM, Facer P, Ferri G-L, Marangos PJ, Pearse AGE (1982) Neuron-specific enolase: a common marker for the endocrine cells and innervation of the gut and pancreas. Gastroenterology 83:902–915Google Scholar
  7. Bishop AE, Carlei F, Lee V, Trojanowski JQ, Marangos PJ, Dahl D, Polak JM (1985) Combined immunostaining of neurofilaments, neuron-specific enolase, GFAP and S-100. Histochemistry 82:93–97Google Scholar
  8. Bucsics A, Saria A, Lembeck F (1981) Substance P in the adrenal gland: origin and species distribution. Neuropeptides 1:329–341Google Scholar
  9. Carmichael SW, Winkler H (1985) The adrenal chromaffin cell. Sci Am 252:30–39Google Scholar
  10. Ch'ng JLC, Polak JM, Bloom SR (1985) Endocrine syndromes. In: Polak JM, Bloom SR (eds) Endocrine tumours - the pathobiology of regulatory peptide-containing tumours. Churchill Livingstone, Edinburgh, pp 264–280Google Scholar
  11. Coghlan JP, Penschow JD, Hudson PJ, Niall HD (1984) Hybridisation histochemistry: use of recombinant DNA for tissue localisation of specific mRNA populations. Clin Exper Hyper-Theory Pract (A6) 1&2:63–78Google Scholar
  12. Coupland RE (1952) Prenatal development of abdominal paraaortic bodies in man. J Anat 86:357Google Scholar
  13. Cox BM (1982) Endogeneous opioid peptides: a guide to structures and terminology. Life Sci 31:1645–1658Google Scholar
  14. De Lellis RA, Tischler AS, Wolfe HJ (1984) Multidirectional differentiation in neuroendocrine neoplasms. J Histochem Cytochem 32:899–904Google Scholar
  15. Facer P, Bishop AE, Lloyd RV, Wilson BS, Hennessy RJ, Polak JM (1985) Chromogranin: a newly recognised marker for endocrine cells of the human gastrointestinal tract. Gastroenterology 89(6):1366–1373Google Scholar
  16. Gall JG, Pardue ML (1971) Nucleic acid hybridisation in cytological preparations. In: Grossman L, Moldave K (eds) Methods in Enzymology, vol XXI. Academic Press, New York, pp 470–480Google Scholar
  17. Gamse R, Saria A, Bucsics A, Lembeck F (1981) Substance P in tumours: phaeochromocytoma and carcinoid. Peptides 2 Suppl 2:275–280Google Scholar
  18. Grimelius L, Wilander E (1985) Silver impregnation and other non-immunocytochemical staining methods. In: Polak JM, Bloom SR (eds) Endocrine tumours - the pathobiology of regulatory peptide-containing tumours. Churchill Livingstone, Edinburgh, pp 95–115Google Scholar
  19. Gulbenkian S, Wharton J, Hacker GW, Varndell IM, Bloom SR, Polak JM (1985) Co-localisation of neuropeptide tyrosine (NPY) and its C-terminal flanking peptide (C-PON). Peptides 6:1237–1243Google Scholar
  20. Hacker GW, Springall DR, Van Noorden S, Bishop AE, Grimelius L, Polak JM (1985a) The immunogold-silver staining method - a powerful tool in histopathology. Virchows Archiv A (Pathol Anat) 406:449–461Google Scholar
  21. Hacker GW, Polak JM, Springall DR, Tang S-K, Van Noorden S, Lackie P, Grimelius L, Adam H (1985b): Immunogold-silver staining (IGSS) - Eine Übersicht. Mikroskopie (Wien) 42:318–325Google Scholar
  22. Hacker GW, Polak JM, Springall DR, Ballesta J, Cadieux A, Gu J, Trojanowski JQ, Dahl D, Marangos P (1985c) Antibodies to neurofilament proteins and other brain peptides reveal the innervation of peripheral organs. Histochemistry 82:581–593Google Scholar
  23. Hamid HQ, Bishop AE, Sikri KL, Varndell IM, Bloom SR, Polak JM (1986) Immunocytochemical characterisation of 10 pancreatic tumours, associated with the glucagonoma syndrome, using antibodies to separate regions of the proglucagon molecule and other neuroendocrine markers. Histopathology 10:119–133Google Scholar
  24. Hassoun J, Monges G, Giraud P, Henry JF, Charpin C, Payan H, Toga M (1984) Immunohistochemical study of phaeochromocytomas- an investigation of methionine-enkephalin, vasoactive intestinal peptide, somatostatin, corticotropin, beta-endorphin and calcitonin in 16 tumours. Am J Pathol 114:56–63Google Scholar
  25. Hökfelt T, Elfvin LG, Schultzberg M, Said SI, Mutt V, Goldstein M (1977) Immunohistochemical evidence of vasoactive intestinal polypeptide-containing neurons and nerve fibres in sympathetic ganglia. Neuroscience 2:885–896Google Scholar
  26. Holgate C, Jackson P, Cowen P, Bird C (1983) Immunogold-silver staining: new method of immunostaining with enhanced sensitivity. J Histochem Cytochem 31:938–944Google Scholar
  27. Holst JJ (1983) Molecular heterogeneity of glucagon in normal subjects and in patients with glucagon-producing tumours. Diabetologia 24:359–365Google Scholar
  28. Hsi KL, Seidah NG, De Serres G, Chretien M (1982) Isolation and N-terminal sequence of a novel porcine anterior pituitary polypeptide: homology to proinsulin, secretion and Rous sarcoma virus transforming protein TVFV60. FEBS Lett 147:261–266Google Scholar
  29. Huang WM, Gibson SJ, Facer P, Gu J, Polak JM (1983) Improved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating. Histochemistry 77:275–297Google Scholar
  30. Hutchinson NJ, Langer-Safer PR, Ward DC, Hamkalo BA (1982) In situ hybridisation at the electron microscope level: hybrid detection by autoradiography and colloidal gold. J Cell Biology 95:609–618Google Scholar
  31. Kobayashi S, Okashi T, Fujita T, Nakao K, Yoshimasa T, Imura H, Mochizuki T, Yanaihara C, Yanaihara N, Verhofstad AA (1983) An immunocytochemical study of the co-storage of Met-enkephalin-Arg6-Gly7-Leu8 and Met-enkephalin-Arg6-Phe7 with adrenaline and/or noradrenaline in the adrenal chromaffin cells of the rat, dog and cat. Biomed Res 4:433–437Google Scholar
  32. Lawrence RB, Singer RH (1985) Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res 13:1777–1799Google Scholar
  33. Lehto V-P, Virtanen I, Miettinen M, Dahl D, Kahri A (1983) Neurofilaments in adrenal and extra-adrenal phaeochromocytoma. Demonstration using immunofluorescence microscopy. Arch Pathol Lab Med 107:492–494Google Scholar
  34. Linnoila RI, Diaugustine RP, Hervonen A, Miller RJ (1980) Distribution of (met5) and (leu5)-enkephalin, VIP- and substance P-like immunoreactivities in human adrenal glands. Neuroscience 5:2247–2259Google Scholar
  35. Liu TH, Chen GS, Nan C, He ZG (1984) Clinico-pathological and ultrastructural characteristics of phaeochromocytoma. An analysis of 55 cases. Pathol Res Pract 178:355–362Google Scholar
  36. Livett BG, Day R, Elde RP, Howe PR (1982) Co-storage of enkephalins and adrenaline in the bovine adrenal medulla. Neuroscience 7:1323–1326Google Scholar
  37. Lloyd RV, Blaivas M, Wilson BS (1985) Distribution of chromogranin and S-100 protein in normal and abnormal adrenal medullary tissues. Arch Pathol Lab Med 109:633–635Google Scholar
  38. Lundberg JM, Hamberger B, Schultzberg M, Hökfelt T, Granberg PO, Efendic S, Terenius L, Goldstein M, Luft R (1979) Enkephalin- and somatostatin-like immunoreactivities in human adrenal medulla and phaeochromocytoma. Proc Natl Acad Sci USA 76:4079–4083Google Scholar
  39. Lundberg JM, Rokaeus A, Hökfelt T (1982) Neurotensin-like immunoreactivity in the preganglionic sympathetic nerves and in the adrenal medulla of cat. Acta Physiol Scand 114:153–155Google Scholar
  40. Majane EA, Alho H, Kataoka Y, Lee CH, Yang HYT (1985) Neuropeptide Y in bovine adrenal glands: distribution and characterisation. Endocrinology 117:1162–1168Google Scholar
  41. Melander T, Hökfelt T, Rökaeus A, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastrointestinal tract of several mammalian species. Cell Tissue Res 239:253–270Google Scholar
  42. Pearse AGE (1972) Histochemistry. Theoretical and applied, ed 3, vol 2, Churchill Livingstone, EdinburghGoogle Scholar
  43. Pearse AGE, Polak JM (1975) Bifunctional reagents as vapour and liquid phase fixatives for immunocytochemistry. Histochem J 7:179–186Google Scholar
  44. Polak JM, Bloom SR (1985) Pathology of peptide-producing neuroendocrine tumours. Br J Hosp Med Feb.:78–88Google Scholar
  45. Pollard K, Wing E (1984) Malignant phaeochromocytoma in children: a case with neurofibromatosis and review of the literature. Eur Paediatr Haematol Oncol 1:152–165Google Scholar
  46. Rode J, Dhillon AP, Doran JF, Jackson P, Thompson RJ (1985) PGP 9.5, a new marker for human neuroendocrine tumours. Histopathology 9:147–158Google Scholar
  47. Sano T, Saito H, Inaba H, Hizawa K, Saito S, Yamanoi A, Mizunuma Y, Matsumura M, Yuasa M, Hiraishi K (1983) Immunoreactive somatostatin and vasoactive intestinal polypeptide in adrenal phaeochromocytoma. Cancer 52:282–289Google Scholar
  48. Saria A, Wilson SP, Molnar A, Viveros OH, Lembeck F (1980) Substance P and opiate-like peptides in human adrenal medulla. Neuroscience Lett 20:195–200Google Scholar
  49. Schmechel D, Marangos PJ, Brightman M (1978) Neuron specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276:834–836Google Scholar
  50. Schultzberg M, Lundberg JM, Hökfelt T, Terenius L, Brandt J, Elde RP, Goldstein M (1978) Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience 3:1168–1186Google Scholar
  51. Seidah NG, Hsi KL, De Serres G, Rochemont J, Hamelin J, Antakly T, Cantin M, Chretien M (1983) Isolation and N-terminal sequence of a highly conserved human and pituitary protein belonging to a new superfamily. Immunocytochemical localisation in pars distalis and pars nervosa of the pituitary and in the supraoptic nucleus of the hypothalamus. Arch Biochem Biophys 225:525–534Google Scholar
  52. Shivers BD, Harlan RE, Pfaff DW, Schachter BS (1986) Combination of immunocytochemistry and in situ hybridisation in the same tissue section of rat pituitary. J Histochem Cytochem 34:39–43Google Scholar
  53. Skofitsch G, Jacobowitz DM (1985) Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546Google Scholar
  54. Springall DR, Hacker GW, Grimelius L, Polak JM (1984) The potential of the immunogold-silver staining technique for paraffin sections. Histochemistry 81:603–608Google Scholar
  55. Sternberger LA (1979) Immunocytochemistry, ed 2. John Wiley and Sons, New YorkGoogle Scholar
  56. Suda T, Tozawa F, Tachibana S, Demura H, Shizume K, Sasaki A, Mouri T, Miura Y (1983) Multiple forms of immunoreactive dynorphin in human pituitary and phaeochromocytoma. Life Sci 32:865–870Google Scholar
  57. Suzuki H, Ghatei MA, Williams SJ, Uttenthal LO, Facet P, Bishop AE, Polak JM, Bloom SR (1986) Production of pituitary protein 7B2 immunoreactivity by endocrine tumours and its possible diagnostic value. J Clin Endocrinol Metabol 63:758–765Google Scholar
  58. Tapia FJ, Polak JM, Barbosa AJA, Bloom SR, Marangos PJ, Dermody C, Pearse AGE (1981) Neuron-specific enolase is produced by neuroendocrine tumours. Lancet i:808–811Google Scholar
  59. Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V (1983) Galanin - a novel biologically active peptide from porcine intestine. Febs Letts 164:124–128Google Scholar
  60. Terenghi G, Polak JM, Varndell IM, Lee YC, Wharton J, Bloom SR (1983) Neurotensin-like immunoreactivity in a subpopulation of noradrenaline containing cells of the cat adrenal gland. Endocrinology 112:226–233Google Scholar
  61. Thompson RJ, Doran JF, Jackson P, Dhillon AP, Rode J (1983) PGP 9.5 a new marker for vertebrate neurones and neuroendocrine cells. Brain Res 278:224–228Google Scholar
  62. Tischler AS, Lee YC, Perlman RL, Costopoulos D, Slayton VW, Bloom SR (1984) Production of ectopic vasoactive intestinal polypeptide-like and neurotensin-like immunoreactivity in human phaeochromocytoma cell cultures. J Neurosci 4:1398–1404Google Scholar
  63. Varndell IM, Tapia FJ, De Mey J, Rush RA, Bloom SR, Polak JM (1981) Electronimmunocytochemical localisation of enkephalin-like material in catecholamine-containing cells of the carotid body, the adrenal medulla and in phaeochromocytomas of man and other mammals. J Histochem Cytochem 30:682–690Google Scholar
  64. Varndell IM, Polak JM, Sikri KL, Minth CD, Bloom SR, Dixon JE (1984a) Visualisation of messenger RNA directing peptide synthesis by in situ hybridisation using a novel single-stranded cDNA probe. Potential for the investigation of gene expression and endocrine cell activity. Histochemistry 81:597–601Google Scholar
  65. Varndell IM, Polak JM, Allen JM, Terenghi G, Bloom SR (1984b) Neuropeptide tyrosine (NPY) in norepinephrine-containing cells of the mammalian adrenal gland. Endocrinology 114:1460–1462Google Scholar
  66. Viale G, Dell'Orto P, Moro E, Cozzaglio L, Coggi G (1985) Vasoactive intestinal polypeptide-, somatostatin- and calcitonin-containing adrenal phaeochromocytoma associated with the watery diarrhea (WDHA) syndrome. Cancer 55:1099–1106Google Scholar
  67. Viveros OH, Diliberto EJ, Hazum E, Chang KG (1979) Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol Pharmacol 16:1101–1108Google Scholar
  68. Viveros OH, Diliberto EJ, Hazum E, Chang KJ (1980) Enkephalins as possible adrenomedullary hormones: storage, secretion and regulation of synthesis. In: Costa E, Trabucchi M (eds) Neural peptides and neuronal communication. Adv Biochem Psychopharmacol, Raven Press, New York, vol 22, pp 191–204Google Scholar
  69. Wilson SP, Cubeddu LY, Chang K-J, Viveros OH (1981a) Metenkephalin in human phaeochromocytoma tumours. Neuropeptides 1:273–281Google Scholar
  70. Wilson SP, Slepetics R, Chang KJ, Kirshner N, Viveros OH (1981b) Differential secretion of opioid peptides and catecholamines from cultured cells of a human phaeochromocytoma tumour. Life Sci 29:2257–2264Google Scholar
  71. Yoshimasa T, Nakao K, Oki S, Tanaka I, Nakai Y, Imura H (1981) Presence of dynorphin-like immunoreactivity in phaeochromocytomas. J Clin Endocrinol Metabol 52:213–214Google Scholar
  72. Yoshimasa T, Nakao K, Li S, Ikeda Y, Suda M, Sakamoto M, Imura H (1983) Plasma methionine-enkephalin and leucine-enkephalin in normal subjects and patients with phaeochromocytoma. J Clin Endocrinol Metabol 57:706–712Google Scholar
  73. Yoshimasa T, Nakao K, Sakamoto M, Suda M, Morii N, Ikeda Y, Ishihara T, Manno M, Hamada S, Shimbo S, Mori T, Yoshimi T, Matsukura S, Imura H (1984) Demonstration and characterization of immunoreactive methionine-enkephalin, leucine-enkephalin, methionine-enkephalin-Arg6-Gly7-Leu8 and methionine-enkephalin-Arg6-Phe7 in human phaeochromocytoma. Acta Endocrinol 107:261–267Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Gerhard W. Hacker
    • 3
  • Anne E. Bishop
    • 1
  • Giorgio Terenghi
    • 1
  • Ian M. Varndell
    • 1
  • John Aghahowa
    • 1
  • Ken Pollard
    • 2
  • Josef Thurner
    • 3
  • Julia M. Polak
    • 1
  1. 1.Department of HistochemistryRoyal Postgraduate Medical SchoolLondonUK
  2. 2.Department of PathologyUniversity of LeedsLeeds, YorkshireUK
  3. 3.Institute of Pathological AnatomySalzburgAustria

Personalised recommendations