Advertisement

Letters in Mathematical Physics

, Volume 33, Issue 3, pp 263–272 | Cite as

The quantum super-Yangian and Casimir operators of Uq(gl(M |N))

  • R. B. Zhang
Article

Abstract

TheZ2 graded Yangian Yq(gl(M |N)) associated with the Perk-SchultzR matrix is introduced. Its structural properties, the central algebra in particular, are studied. AZ2-graded associative algebra epimorphism Yq(gl(M |N)) → Uq (gl(M |N)) is obtained in explicit form. Images of central elements of the quantum super-Yangian under this epimorphism yield the Casimir operators of the quantum supergroup Uq(gl(M |N)) constructed in an earlier publication.

Mathematics Subject Classifications (1991)

17B37 81R50 17A70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kulish, P. P. and Reshetikhin, N. Yu,Lett. Math. Phys. 18, 143 (1989); Chaichian, M. and Kulish, P. P.,Phys. Lett. B 234, 72 (1990); Bracken, A. J., Gould, M. D., and Zhang, R. B.,Modern Phys. Lett. A 5, 831 (1990); Tolstoy, V. N.,Lect. Notes Phys. 370, Springer-Verlag, New York, 1990, p. 118; Floreanini, R., Spiridonov, V. P., and Vinet, L.,Comm. Math. Phys. 137, 149 (1991); Scheunert, M.,Lett. Math. Phys. 24, 173 (1992); Floreanini, R., Leites, D. A., and Vinet, L.,Lett. Math. Phys. 23, 127 (1991).Google Scholar
  2. 2.
    Perk, J. H. H. and Schultz, C. L.,Phys. Lett. A 84, 407 (1981).Google Scholar
  3. 3.
    Bazhanov, V. V. and Shadrikov, A. G.,Theoret Math. Phys. 73, 1302 (1987).Google Scholar
  4. 4.
    Zhang, R. B., Bracken, A. J., and Gould, M. D.,Phys. Lett. B 257, 133 (1991).Google Scholar
  5. 5.
    Drinfeld, V. G.,Soviet Math. Dokl. 36, 212 (1988).Google Scholar
  6. 6.
    Nazarov, M. L.,Lett. Math. Phys. 21, 123 (1991).Google Scholar
  7. 7.
    Cherednik, I. V.,Duke Math. J. 54, 563 (1987).Google Scholar
  8. 8.
    Molev, A., Nazarov, M., and Olshanskii, G., Yangians and classical Lie algebras, Preprint, Australian National Univ.Google Scholar
  9. 9.
    Zhang, R. B.,J. Math. Phys. 33, 1970 (1992).Google Scholar
  10. 10.
    Gould, M. D., Zhang, R. B., and Bracken, A. J.,J. Math. Phys. 32, 2298 (1991); Zhang, R. B., Gould, M. D., and Bracken, A. J.,J. Phys. A 24, 937 (1991).Google Scholar
  11. 11.
    Zhang, R. B. and Gould, M. D.,J. Math. Phys. 32, 3261 (1991).Google Scholar
  12. 12.
    Nazarov, M. and Tarasov, V., Yangians and Gelfand-Zetlin bases, Preprint, RIMS, Kyoto Univ.Google Scholar
  13. 13.
    Jarvis, P. D. and Green, H. S.,J. Math. Phys. 20, 2115 (1979); Scheunert, M.,J. Math. Phys. 24, 2658, 2671, 2681 (1983).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • R. B. Zhang
    • 1
  1. 1.Department of Pure MathematicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations