Advertisement

Letters in Mathematical Physics

, Volume 33, Issue 3, pp 231–240 | Cite as

A star-product approach to noncompact quantum groups

  • Frédéric Bidegain
  • Georges Pinczon
Article

Abstract

Using the duality and the topological theory of well-behaved Hopf algebras, we construct star-product models of noncompact quantum groups from Drinfeld and Reshetikhin standard deformations of enveloping Hopf algebras of simple Lie algebras. Our star-products act not only on coefficient functions of finite-dimensional representations, but actually on allC functions, and they even exist for nonlinear (semi-simple) Lie groups.

Mathematics Subject Classifications (1991)

AMS classification 17B37 16W30 22D05 46H99 81R50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Deformation theory and quantization I and II,Ann. Phys. 111, 61 and 111 (1978).Google Scholar
  2. 2.
    Bonneau, P., Flato, M., Gerstenhaber, M., and Pinczon, G. The hidden group structure of quantum groups,Comm. Math. Phys. 161, 125 (1994).Google Scholar
  3. 3.
    Drinfeld, V. G., Quantum groups, inProc. ICM 1986, vol 1 AMS, Providence, 1987, p. 798.Google Scholar
  4. 4.
    Drinfeld, V. G., On almost cocommutative Hopf algebras,Leningrad Math. J. 1, 321 (1990).Google Scholar
  5. 5.
    Faddeev, L. D., Reshetikhin, N. Y., and Takhtajan, L. A. Quantization of Lie groups and Lie algebras,Leningrad Math. J. 1, 193 (1990).Google Scholar
  6. 6.
    Gerstenhaber, M., On the deformations of rings and algebras,Ann. Math. 79, 59 (1964).Google Scholar
  7. 7.
    Gerstenhaber, M. and Schack, S. D., Algebras, bialgebras, quantum groups and algebraic deformations,Contemp. Math. 134, 51 (1992).Google Scholar
  8. 8.
    Harish Chandra, Lie algebras and the Tannaka duality theorem,Ann. Math. 51, 299 (1950).Google Scholar
  9. 9.
    Knapp, A. W.,Representation Theory of Semi-Simple Lie groups, Princeton Math. Series 36, Princeton Univ. Press, Princeton, NJ, 1986.Google Scholar
  10. 10.
    Lesimple, M. and Pinczon, G., Deformations of representations of Lie groups and Lie algebras,J. Math. Phys. 34, 4251 (1993).Google Scholar
  11. 11.
    Reshetikhin, N., Multiparameter quantum groups,Lett. Math. Phys. 20, 331 (1990).Google Scholar
  12. 12.
    Trèves, F.,Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.Google Scholar
  13. 13.
    Twietmeyer, E., Real forms ofU q(g)q(g),Lett. Math. Phys. 24, 49 (1992).Google Scholar
  14. 14.
    Warner, G.,Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag, New York, 1972.Google Scholar
  15. 15.
    Woronowicz, S. L., Compact matrix pseudogroupsComm. Math. Phys. 111, 613 (1987).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Frédéric Bidegain
    • 1
  • Georges Pinczon
    • 1
  1. 1.Laboratoire d'Algèbre et Analyse: Théorie des représentations Physique MathématiqueUniversité de BourgogneDijon CedexFrance

Personalised recommendations