Lipid protein interactions in mitochondria. VIII. Effect of general anesthetics on the mobility of spin labels in lipid vesticles and mitochondrial membranes

  • Laura Mazzanti
  • Giovanna Curatola
  • Giovanna Zolese
  • Enrico Bertoli
  • Giorgio Lenaz
Research Articles

Abstract

We have studied the effect of general anesthetics on the mobility of two stearic acid spin labels (5-doxyl stearic acid and 16-doxyl stearic acid) in bovine heart mitochondria and in phospholipid vesicles made from either mitochondrial lipids or commercial soybean phospholipids. The general anesthetics used include nonpolar compounds (alcohols, halothane, pentrane, diethyl ether, chloroform) and the amphipathic compound, ketamine. All anesthetics tested increase the mobility of the spin labels in phospholipid vesicles to a limited extent up to a concentration where the ESR spectra become those of free spin labels. On the other hand, anesthetics have a pronounced effect on mitochondrial membranes at concentrations as low as those known to produce general anesthesia; the effect is lower near the bilayer surface (5-doxyl stearic acid) and very strong in the bilayer core (16-doxyl stearic acid). The effects of anesthetics are mimicked by the detergent, Triton X-100. We suggest that the discrepancy between the action of anesthetics in mobilizing the spin labels in lipid vesicles and in membranes results from labilization of lipid protein interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lenaz, A. M. Sechi, L. Masotti, and G. Parenti-Castelli,Arch. Biochem. Biophys. 141 (1970) 79–88.Google Scholar
  2. 2.
    G. Lenaz, A. M. Sechi, G. Parenti-Castelli, and L. Masotti,Arch. Biochem. Biophys. 141 (1970) 89–98.Google Scholar
  3. 3.
    G. Lenaz, G. Parenti-Castelli, A. M. Sechi, and L. Masotti,Arch. Biochem. Biophys. 148 (1972) 391–399.Google Scholar
  4. 4.
    G. Lenaz, G. Parenti-Castelli, and A. M. Sechi,Arch. Biochem. Biophys. 167 (1975) 72–79.Google Scholar
  5. 5.
    G. Lenaz, E. Bertoli, G. Curatola, L. Mazzanti, and A. Bigi,Arch. Biochem. Biophys. 172 (1976) 278–288.Google Scholar
  6. 6.
    G. Lenaz, G. Parenti-Castelli, A. M. Sechi, E. Bertoli, and D. E. Griffiths, inMembrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. G. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), North-Holland, Amsterdam (1974), pp. 23–28.Google Scholar
  7. 7.
    L. Landi, G. Parenti-Castelli, G. Olivo, A. M. Sechi, and G. Lenaz,Bull. Mol. Biol. Med. 1 (1976) 29–36.Google Scholar
  8. 8.
    P. Seeman,Pharmacol. Rev. 24 (1972) 583–655.Google Scholar
  9. 9.
    K. H. Meyer,Trans. Faraday Soc. 33 (1937) 1062–1068.Google Scholar
  10. 10.
    M. W. Hill, inMolecular Mechanisms in General Anesthesia (M. J. Halsey, R. A. Miller, and J. A. Sutton, eds.), Churchill Livingstone, Edinburgh (1974), pp. 132–144.Google Scholar
  11. 11.
    M. W. Hill,Biochim. Biophys. Acta 356 (1974) 117–124.Google Scholar
  12. 12.
    J. R. Trudell, W. L. Hubbell, and E. N. Cohen,Biochim. Biophys. Acta 291 (1973) 328–334.Google Scholar
  13. 13.
    G. Lenaz, G. Curatola, and L. Masotti,J. Bioenergetics 7 (1975) 233–299.Google Scholar
  14. 14.
    A. G. Lee,Mol. Pharmacol. 13 (1977) 474–487.Google Scholar
  15. 15.
    S. J. Paterson, K. W. Butler, P. Huang, J. Labelle, I. C. P. Smith, and H. Schneider,Biochim. Biophys. Acta 266 (1972) 597–602.Google Scholar
  16. 16.
    P. Seeman,Experientia 30 (1974) 759–760.Google Scholar
  17. 17.
    J. Augustin and W. Hasselbach,Eur. J. Biochem. 39 (1973) 75–84.Google Scholar
  18. 18.
    J. W. Woodburg, J. S. D.'Arrigo, and H. Eyring, inMolecular Mechanisms of Anesthesia (B. R. Fink, ed.), Raven Press, New York (1975), pp. 253–276.Google Scholar
  19. 19.
    J. C. Hsia and J. M. Boggs, inMolecular Mechanisms of Anesthesia (B. R. Fink, ed.), Raven Press, New York (1975), pp. 327–339.Google Scholar
  20. 20.
    Sachsenheime et al.,FEBS Lett. 79 (1977) 310–316.Google Scholar
  21. 21.
    A. Wishnia,Proc. Natl. Acad. Sci. U.S. 48 (1962) 2200–2204.Google Scholar
  22. 22.
    D. Balasubramian and D. B. Wetlaufer,Proc. Natl. Acad. Sci. U.S. 55 (1966) 762–765.Google Scholar
  23. 23.
    P. C. Jost, A. S. Waggoner, and O. H. Griffith, inStructure and Function of Biological Membranes (L. I. Rothfield, ed.), Academic Press, New York (1971), pp. 84–142.Google Scholar
  24. 24.
    D. Chapman and G. Dodd, inStructure and Function of Biological Membranes (L. I. Rothfield, ed.), Academic Press, New York (1971), pp. 13–81.Google Scholar
  25. 25.
    A. L. Smith,Methods Enzymol. 10 (1967) 81–86.Google Scholar
  26. 26.
    R. E. Beyer,Methods Enzymol. 10 (1967) 186–194.Google Scholar
  27. 27.
    J. Folch Pi, M. Lees, and G. H. Sloan-Stanley,J. Biol. Chem. 226 (1957) 497–509.Google Scholar
  28. 28.
    P. A. Marks, A. Gellhorn, and C. Kidson,J. Biol. Chem. 235 (1960) 2579–2583.Google Scholar
  29. 29.
    S. Fleischer and B. Fleischer,Methods Enzymol. 10 (1967) 406–433.Google Scholar
  30. 30.
    S. Eletr and G. Inesi,Biochim. Biophys. Acta 290 (1972) 178–185.Google Scholar
  31. 31.
    D. Kivelson,J. Chem. Phys. 33 (1960) 1099–1106.Google Scholar
  32. 32.
    S. Eletr, D. Zakim, and D. A. Vessey,J. Mol. Biol. 78 (1973) 351–362.Google Scholar
  33. 33.
    W. L. Hubbell and H. M. McConnell,J. Am. Chem. Soc. 93 (1971) 314.Google Scholar
  34. 34.
    P. C. Jost, O. H. Griffith, R. A. Capaldi, and G. Vanderkooi,Biochim Biophys. Acta 311 (1973) 141–152.Google Scholar
  35. 35.
    J. Rottem and A. Samuni,Biochim. Biophys. Acta 298 (1973) 32–38.Google Scholar
  36. 36.
    P. Laggner and M. D. Barratt,Arch. Biochem. Biophys. 170 (1975) 92–101.Google Scholar
  37. 37.
    G. B. Warren, J. P. Bennett, T. R. Hesketh, M. P. Houslay, G. A. Smith, and J. C. Metcalfe,Proc. Tenth FEBS Meeting (1975) 3–15.Google Scholar
  38. 38.
    A. G. Gornall, C. J. Bardawill, and M. M. David,J. Biol. Chem. 177 (1949) 751–766.Google Scholar
  39. 39.
    G. V. Marinetti,J. Lipid Res. 3 (1962) 1–20.Google Scholar
  40. 40.
    G. Lenaz, inMembrane Proteins and Their Interaction with Lipids (R. A. Capalid, ed.), Marcel Dekker, New York, (1977), pp. 47–149.Google Scholar
  41. 41.
    J. M. Boggs, T. Yoong, and J. C. Hsia,Mol. Pharmacol. 12 (1976) 127–135.Google Scholar
  42. 42.
    A. Helenius and K. Simons,Biochim. Biophys. Acta 415 (1975) 29–79.Google Scholar
  43. 43.
    D. Capman, J. Urbina, and K. M. Keough,J. Biol. Chem. 249 (1974) 2512–2521.Google Scholar
  44. 44.
    A. Seelig and J. Seelig,Hoppe-Seyler's Z. Physiol. Chem. 359 (1978) 1747–1756.Google Scholar
  45. 45.
    S. M. Johnson, K. W. Miller, and A. D. Bangham,Biochim. Biophys. Acta 307 (1973) 42–57.Google Scholar
  46. 46.
    T. R. Hesketh, G. A. Smith, M. D. Houslay, K. A. McGill, N. J. M. Birdsall, J. C. Metcalfe, and G. B. Warren,Biochemistry 15 (1976) 4145–4151.Google Scholar
  47. 47.
    E. Oldfield and D. Chapman,Biochem. Biophys. Res. Comm. 43 (1971) 610–616.Google Scholar
  48. 48.
    K. W. Butler, N. H. Tattrie, and I. C. P. Smith,Biochim. Biophys. Acta 363 (1974) 351–360.Google Scholar
  49. 49.
    G. Lenaz,Subcell. Biochem. 3 (1974) 167–248.Google Scholar
  50. 50.
    C. M. Armostrong, F. Benzanilla, and E. Rojas,J. Chem. Physiol. 62 (1973) 375–380.Google Scholar
  51. 51.
    M. G. Goodall and D. W. Urry,Biochim. Biophys. Acta 291 (1973) 317–320.Google Scholar
  52. 52.
    B. Hille,Progr. Biophys. Mol. Biol. 21 (1971) 1–32.Google Scholar
  53. 53.
    G. Lenaz, G. Curatola, L. Mazzanti, G. Parenti-Castelli, and E. Bertoli,Biochem. Pharmacol. 27 (1978) 2835–2844.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • Laura Mazzanti
    • 1
  • Giovanna Curatola
    • 1
  • Giovanna Zolese
    • 1
  • Enrico Bertoli
    • 1
  • Giorgio Lenaz
    • 1
  1. 1.Giorgio Lenaz, Istituto di BiochimicaUniversità, di AnconaAnconaItaly

Personalised recommendations