Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 18, Issue 5, pp 331–368 | Cite as

The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport

  • Charles R. Hackenbrock
  • Brad Chazotte
  • Sharmila Shaila Gupte
Research Articles

Abstract

This review focuses on our studies over the past ten years which reveal that the mitochondrial inner membrane is a fluid-state rather than a solid-state membrane and that all membrane proteins and redox components which catalyze electron transport and ATP synthesis are in constant and independent diffusional motion. The studies reviewed represent the experimental basis for therandom collision model of electron transport. We present five fundamental postulates upon which the random collision model of mitochondrial electron transport is founded: (1) All redox components areindependent lateral diffusants; (2) Cytochromec diffuses primarily inthree dimensions; (3) Electron transport is adiffusion-coupled kinetic process; (4) Electron transport is amulticollisional, obstructed, long-range diffusional process; (5) The rates of diffusion of the redox components have a direct influence on the overall kinetic process of electron transport and can berate limiting, as indiffusion control. The experimental rationales and the results obtained in testing each of the five postulates of the random collision model are presented. In addition, we offer the basic concepts, criteria and experimental strategies that we believe are essential in considering the significance of the relationship between diffusion and electron transport. Finally, we critically explore and assess other contemporary studies on the diffusion of inner membrane components related to electron transport including studies on: rotational diffusion, immobile fractions, complex formation, dynamic aggregates, and rates of diffusion. Review of all available data confirms the random collision model and no data appear to exist that contravene it. It is concluded that mitochondrial electron transport is a diffusion-based random collision process and that diffusion has an integral and controlling affect on electron transport.

Key words

Redox components collision efficiency diffusion-coupled reactions diffusion control energy of activation fluorescence recovery after photobleaching resonance energy transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alecio, M. R., Golan, D. E., Veatch, W. R., and Rando, R. R. (1982).Proc. Natl. Acad. Sci. USA 79, 5171.Google Scholar
  2. Aronada, F. J., and Gomez-Fernandez, J. C. (1985).Biochim. Biophys. Acta 820, 16.Google Scholar
  3. Barisas, B. G., and Leuther, M. D. (1979).Biophys. Chem. 10, 221.Google Scholar
  4. Cadman, A. D., Fleming, R., and Guy, R. H. (1981).Biophys. J. 37, 569.Google Scholar
  5. Capaldi, R. A. (1982).Biochim. Biophys. Acta 694, 291.Google Scholar
  6. Chance, B., and Erecinska, M. (1975).Eur. J. Biochem. 54, 521.Google Scholar
  7. Chazotte, B., Wu, E-S., and Hackenbrock, C. R. (1983a).Biochem. Trans. 12, 463.Google Scholar
  8. Chazotte, B., Wu, E-S., and Hackenbrock, C. R. (1983b).Fed. Proc. 42, 2170.Google Scholar
  9. Chazotte, B., and Hackenbrock, C. R. (1984). InThird European Bioenergetics Conference, Short Reports, p. 697. Congress-Edition, Hanover.Google Scholar
  10. Chazotte, B., Wu, E-S., Höchli, M., and Hackenbrock, C. R. (1985).Biochim. Biophys. Acta 818, 87.Google Scholar
  11. Davis, D. G. (1972).Biochem. Biophys. Res. Commun. 49, 1492.Google Scholar
  12. Davis, D. G., and Inesi, G. (1972).Biochim. Biophys. Acta. 282, 180.Google Scholar
  13. Derzko, Z. and Jacobson, K. (1980).Biochemistry 19, 6050.Google Scholar
  14. Eisinger, J., Flores, J., and Peterson, W. P. (1986).Biophys. J. 49, 987.Google Scholar
  15. Estabrook, R., and Holowinsky, A. (1961).J. Cell Biol. 9, 19.Google Scholar
  16. Eyring, H. (1935).J. Chem. Phys. 3, 107.Google Scholar
  17. Fato, R., Battino, M., Castelli, G., and Lenaz, G. (1985).FEBS Lett. 179, 238.Google Scholar
  18. Feinstein, M. B., Fernandez, S. M., and Shai'afi, R. I. (1975).Biochim. Biophys. Acta 413, 354.Google Scholar
  19. Franck, J., and Rabinowitch, E. (1934).Trans. Faraday Soc. 30, 120.Google Scholar
  20. Freedman, J. A., and Chan, S. H. P. (1983).J. Biol. Chem. 258, 5885.Google Scholar
  21. Gear, A. R. L., and Bednarek, J. M. (1972).J. Cell. Biol. 56, 325.Google Scholar
  22. Gupte, S., Wu, E-S., Höchli, L., Höchli, M., Jacobson, K., Sowers, A., and Hackenbrock, C. R. (1984).Proc. Natl. Acad. Sci. USA 81, 2606.Google Scholar
  23. Gutman, M. (1980).Biphim. Biophys. Acta 594, 53.Google Scholar
  24. Hackenbrock, C. R. (1966).J. Cell Biol. 30, 269.Google Scholar
  25. Hackenbrock, C. R. (1968a).J. Cell Biol. 37, 345.Google Scholar
  26. Hackenbrock, C. R. (1968b).Proc. Natl. Acad. Sci. USA 61, 598.Google Scholar
  27. Hackenbrock, C. R. (1976). InStructure of Biological Membranes: 34th Nobel Foundation Symposium (Abrahamson, S., and Pasher, I., eds), Plenum Press, New York, p. 199.Google Scholar
  28. Hackenbrock, C. R. (1981).Trends Biol. Sci. 6, 151.Google Scholar
  29. Hackenbrock, C. R., and Hammon, K. M. (1975).J. Biol. Chem. 250, 9185.Google Scholar
  30. Hackenbrock, C. R., Höchli, M., and Chau, R. M. (1976).Biochim. Biophys. Acta 455, 466.Google Scholar
  31. Hackenbrock, C. R., Gupte, S. S., and Chazotte, B. (1985). InAchievements and Perspectives of Mitochondrial Research, Volume I:Bioenergetics (Quagliariello, E., Slater, E. C., Palmieri, F., Saccone, C., and Kroon, A. M., eds.), Elsevier, Amsterdam, p. 83.Google Scholar
  32. Hackenbrock, C. R., Chazotte, B., and Gupte, S. S. (1986). InBiomedical and Clinical Aspects of Coenzyme Q, Volume 5 (Yamamura, U., and Folkers, K., eds.), Elsevier, Amsterdam, in press.Google Scholar
  33. Hardt, S. L. (1979).Biophys. Chem. 10, 239.Google Scholar
  34. Hatefi, Y., and Galante, Y. M. (1978). InEnergy Conservation in Biological Membranes (Schäfer, G., and Klingenberg, M., eds.), Springer, Berlin, p. 19.Google Scholar
  35. Heron, C., Ragan, C. I., and Trumpower, B. L. (1978).Biochem. J. 170, 791.Google Scholar
  36. Hille, B. (1984). InIonic Channels of Excitable Membranes, Sinauer Associates, Inc., p. 14.Google Scholar
  37. Höchli, M., and Hackenbrock, C. R. (1976).Proc. Natl. Acad. Sci. USA 73, 1636.Google Scholar
  38. Höchli, M., and Hackenbrock, C. R. (1977).J. Cell Biol. 72, 278.Google Scholar
  39. Höchli, M., and Hackenbrock, C. R. (1979).Proc. Natl. Acad. Sci. USA 76, 1236.Google Scholar
  40. Höchli, M., Höchli, L., and Hackenbrock, C. R. (1985).Eur. J. Cell Biol. 38, 1.Google Scholar
  41. Hochman, J. H., Schindler, M., Lee, J. G., and Ferguson-Miller, S. (1982).Proc. Natl. Acad. Sci. USA 79, 6866.Google Scholar
  42. Hochman, J. H., Schindler, M., Lee, J. G., and Ferguson-Miller, S. (1983). InBiochemistry of Metabolic Processes (Lennon, D., Stratman, F., and Zahlten, R., eds.), Elsevier Biomedical Press, New York, p. 441.Google Scholar
  43. Hochman, J., Ferguson-Miller, S., and Schindler, M. (1985).Biochemistry 24, 2507.Google Scholar
  44. Horowitz, A. F., Horsely, W. J., and Klein, M. P. (1972).Proc. Natl. Acad. Sci. USA 69, 590.Google Scholar
  45. Jacobs, E. E., and Sanadi, D. R. (1960).J. Biol. Chem. 235, 531.Google Scholar
  46. Jacobson, K., Derzko, Z., Wu, E-S., Hou, Y., and Poste, G. (1976).J. Supramol. Struct. 5, 565.Google Scholar
  47. Jacobson, K., Hou, Y., Derzko, Z., Wojcieszyn, J., and Organisciak, D. (1981).Biochemistry 20, 5268.Google Scholar
  48. Johnson, F. H., Eyring, H., and Stover, B. J. (1975). InTheory of Rate Processes in Biology and Medicine, Wiley, New York.Google Scholar
  49. Kapitza, H. G., and Sackman, E. (1980).Biochim. Biophys. Acta 595, 56.Google Scholar
  50. Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J. (1981).J. Biol. Chem. 256, 7518.Google Scholar
  51. Kawato, S., Lehner, C., Müller, M., and Cherry, R. J. (1982).J. Biol. Chem. 257, 6470.Google Scholar
  52. Klingenberg, M., and Kröger, A. (1967). InBiochemistry of Mitochondria (Slater, E. C., Kanigu, Z., and Wojtczak, L., eds.), Academic Press, New York, p. 11.Google Scholar
  53. Koppenol, W. H., and Margoliash, E. (1982).J. Biol. Chem. 257, 4426.Google Scholar
  54. Kröger, A., and Klingenberg, M. (1973a).Eur. J. Biochem. 34, 313.Google Scholar
  55. Kröger, A., and Klingenberg, M. (1973b).Eur. J. Biochem. 39, 598.Google Scholar
  56. Lakowicz, J. R., and Hogan, D. (1980).Chem. Phys. Lipids 26, 1.Google Scholar
  57. Lee, A. G., Birdsall, N. J., and Metcalfe, J. C. (1973).Biochemistry 12, 1650.Google Scholar
  58. Lemasters, J. J. (1978).FEBS Lett. 88, 10.Google Scholar
  59. Lenaz, G., Fato, R., Parenti Castilli, G., and Battino, M. (1985). InAchievements and Perspectives in Mitochondrial Research (abstracts) (Quagliariello, E., Slater, E. C., Palmieri, F., Saccone, C., and Kroon, A. M., eds.), Adriatica Editrice, Bari, Italy, p. 62.Google Scholar
  60. Lenaz, G., Battino, M., Esposti, M., Fato, R., and Parenti-Castelli, G. (1986). InBiomedical and Clinical Aspects of Coenzyme Q, Volume 5 (Yamamura, Y., and Folkers, K., eds.), Elsevier, Amsterdam, in press.Google Scholar
  61. Marcus, R. A., and Sutin, N. (1985).Biochim. Biophys. Acta 811, 265.Google Scholar
  62. Peters, R., and Cherry, R. J. (1982).Proc. Natl. Acad. Sci. USA 79, 4317.Google Scholar
  63. Rabinowitch, E. (1937).Trans. Faraday. Soc. 33, 1225.Google Scholar
  64. Ragan, C. I. (1978).Biochem. J. 172, 539.Google Scholar
  65. Ragan, C. I., and Heron, C. (1978).Biochem. J. 174, 783.Google Scholar
  66. Ragan, C. I., and Cottingham, I. R. (1985).Biochim. Biophys. Acta 811, 13.Google Scholar
  67. Rich, P. (1984).Biochim. Biophys. Acta 768, 53.Google Scholar
  68. Rieder, R., and Bosshard, H. R. (1980).J. Biol. Chem. 355, 4732.Google Scholar
  69. Rottenberg, H. (1985).Mod. Cell Biol. 4, 47.Google Scholar
  70. Saffman, P. G., and Delbrück, M. (1975).Proc. Natl. Acad. Sci. USA 72, 3111.Google Scholar
  71. Salemme, F. R. (1977).Annu. Rev. Biochem. 40, 299.Google Scholar
  72. Schnaitman, C., and Greenwalt, J. W. (1968).J. Cell. Biol. 38, 158.Google Scholar
  73. Schneider, H., Lemasters, J. J., Höchli, M., and Hackenbrock, C. R. (1980a).Proc. Natl. Acad. Sci. USA 77, 442.Google Scholar
  74. Schneider, H., Lemasters, J. J., Höchli, M., and Hackenbrock, C. R. (1980b).J. Biol. Chem. 255, 3748.Google Scholar
  75. Schneider, H., Lemasters, J. J., and Hackenbrock, C. R. (1982a).J. Biol. Chem. 257, 10789.Google Scholar
  76. Schneider, H., Höchli, M., and Hackenbrock, C. R. (1982b).J. Cell Biol. 94, 387.Google Scholar
  77. Schwerzmann, K., Cruz-Orive, L. M., Eggman, R., Sänger, A., and Weibel, E. R. (1986).J. Cell Biol. 102, 97.Google Scholar
  78. Slater, E. C., Berden, J. A., and Herweijer, M. A. (1985).Biochim. Biophys. Acta 811, 217.Google Scholar
  79. Sowers, A. E., and Hackenbrock, C. R. (1981).Proc. Natl. Acad. Sci. USA 78, 6246.Google Scholar
  80. Sowers, A. E., and Hackenbrock, C. R. (1985).Biochim. Biophys. Acta 821, 85.Google Scholar
  81. Speck, S. H., and Margoliash, E. (1984).J. Biol. Chem. 259, 1064.Google Scholar
  82. Stidham, M. A., McIntosh, T. J., and Siedow, J. N. (1984).Biochim. Biophys. Acta 767, 423.Google Scholar
  83. Stier, A., and Sackman, E. (1973).Biochim. Biophys. Acta 311, 400.Google Scholar
  84. Stonehuerner, J., Williams, S. B., and Miller, F. S. (1979).Biochemistry 18, 5422.Google Scholar
  85. Stryer, L. (1978).Annu. Rev. Biochem. 47, 819.Google Scholar
  86. Vanderkooi, J., Maniara, G., and Erecinska, M. (1985).J. Cell Biol. 100, 435.Google Scholar
  87. Veerman, E. C. I., Wilms, J., Dekker, H. L., Muijsers, A. O., van Buuren, K. J. H., van Gelder, B. F., Osheroff, N., Speck, S. H., and Margoliash, E. (1983).J. Biol. Chem. 258, 5739.Google Scholar
  88. Weibel, E. R., Kistler, G. S., and Scherle, W. F. (1966).J. Cell Biol. 30, 23.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Charles R. Hackenbrock
    • 1
  • Brad Chazotte
    • 1
  • Sharmila Shaila Gupte
    • 1
  1. 1.Laboratories for Cell Biology, Department of Anatomy, School of MedicineThe University of North Carolina at Chapel HillChapel Hill

Personalised recommendations