Advertisement

Foundations of Physics

, Volume 15, Issue 9, pp 963–972 | Cite as

Locality, Bell's theorem, and quantum mechanics

  • Peter Rastall
Article

Abstract

Classical relativistic physics assumes that spatially separated events cannot influence one another (“locality”) and that values may be assigned to quantities independently of whether or not they are actually measured (“realism”). These assumptions have consequences—the Bell inequalities—that are sometimes in disagreement with experiment and with the predictions of quantum mechanics. It has been argued that, even if realism is not assumed, the violation of the Bell inequalities implies nonlocality—and hence that radical changes are necessary in the foundations of physics. We show that this conclusion does not follow unless the locality hypothesis is strengthened in an implausible manner.

Keywords

Quantum Mechanic Radical Change Separate Event Bell Inequality Relativistic Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Jammer,The Philosophy of Quantum Mechanics (Wiley, New York, 1974), p. 204.Google Scholar
  2. 2.
    F. J. Belinfante,A Survey of Hidden-Variables Theories (Pergamon, Oxford, 1973).Google Scholar
  3. 3.
    E. P. Wigner, inThe Scientist Speculates, I. J. Good, ed. (Heinemann, London, 1962), p. 284.Google Scholar
  4. 4.
    E. Schroedinger,What is Life? (Cambridge University Press, Cambridge, 1944).Google Scholar
  5. 5.
    E. Schroedinger,Mind and Matter (Cambridge University Press, Cambridge, 1959).Google Scholar
  6. 6.
    E. Schroedinger,My View of the World (Cambridge University Press, Cambridge, 1964).Google Scholar
  7. 7.
    L. Bass,Hermathena No. 112, 52 (1971).Google Scholar
  8. 8.
    J. S. Bell,Physics 1, 195 (1964).Google Scholar
  9. 9.
    J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978).Google Scholar
  10. 10.
    A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).Google Scholar
  11. 11.
    H. P. Stapp,Phys. Rev. D 3, 1303 (1971).Google Scholar
  12. 12.
    H. P. Stapp,Phys. Rev. Lett. 49, 1470 (1982).Google Scholar
  13. 13.
    H. P. Stapp, Berkeley Preprint No. LBL-16482 (1983).Google Scholar
  14. 14.
    G. Zukav,The Dancing Wu Li Masters (Morrow, New York, 1979).Google Scholar
  15. 15.
    D. Bohm,Quantum Theory (Prentice-Hall, New Jersey, 1951), p. 611.Google Scholar
  16. 16.
    D. Bohm,Wholeness and the Implicate Order (Routledge, London, 1980).Google Scholar
  17. 17.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47, 777 (1935).Google Scholar
  18. 18.
    P. Rastall,Phys. Lett. A 86, 85 (1981).Google Scholar
  19. 19.
    P. Rastall,Phys. Lett. A 87, 279 (1982).Google Scholar
  20. 20.
    P. Rastall,Found. Phys. 13, 555 (1983).Google Scholar
  21. 21.
    A. Fine,Phys. Rev. Lett. 48, 291 (1982).Google Scholar
  22. 22.
    P. H. Eberhard,Nuovo Cimento B 38, 75 (1977).Google Scholar
  23. 23.
    P. H. Eberhard,Nuovo Cimento B 46, 392 (1978).Google Scholar
  24. 24.
    P. H. Eberhard,Phys. Rev. Lett. 49, 1474 (1982).Google Scholar
  25. 25.
    P. A. Moldauer,Phys. Rev. Lett. 50, 701 (1983).Google Scholar
  26. 26.
    Y. Aharonov and T. Kaufherr,Phys. Rev. D 30, 368 (1984).Google Scholar
  27. 27.
    N. Herbert,Found. Phys. 12, 1171 (1982).Google Scholar
  28. 28.
    R. G. Jahn,Proc. IEEE 70, 136 (1982).Google Scholar
  29. 29.
    H. Schmidt,Found. Phys. 12, 565 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Peter Rastall
    • 1
  1. 1.Physics DepartmentUniversity of British ColumbiaVancouverCanada

Personalised recommendations