Journal of comparative physiology

, Volume 127, Issue 4, pp 355–361 | Cite as

Comparison of digestive α-amylases from two species of spiders (Tegenaria atrica andCupiennius salei)

  • Thomas P. Mommsen


  1. 1.

    Polyacrylamide gel electrophoreses of digestive fluids reveal the presence of two to three amylases (molecular mass about 58,000 Dalton) in the webbuilding spiderTegenaria atrica, and three enzymes (molecular mass about 63,000 Dalton) in the hunting spiderCupiennius salei. In either case, one amylase is largely predominant.

  2. 2.

    The dominating enzyme of each spider can be classified as an α-amylase (E.C. by the binding of and activation by chloride. TheK D is 1.6 mM for Cl at 30°C. Chloride concentrations below the optimum (<10 mM) have neither effect on pH-optimum nor onK m , but lowerV max .

  3. 3.

    Tegenaria andCupiennius amylases show identical behaviour with respect to all kinetic parameters studied, except for temperature dependence.

  4. 4.

    The Michaelis constants are around 4.5 mg/ml for soluble starch and for glycogen as substrates. Values forV max are slightly higher with soluble starch than with glycogen. Total activity is in the order of 50 to 75 nkat reducing groups per mg of protein of the unfractionated digestive fluid. pH-optima are near the pH of the digestive fluid (pH 7.4).

  5. 5.

    Discontinuous Arrhenius plots show that both amylases exist in at least two temperature-dependent conformational states. Activation enthalpy values are about 30% lower inTegenaria than inCupiennius amylases.

  6. 6.

    The amylases appear to be calcium-dependent enzymes which are non-competitively inhibited by Hg++ and Cu++.

  7. 7.

    Other anions activate the amylases similar to chloride, the effect decreasing with increasing iondiameter. Fluoride does neither activate nor inhibit.



Enzyme Starch Enthalpy Fluoride Electrophoresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barabanova, V.V.: Digestion of starch and protein byRhizoglyphus echinopus Fum. et Rob. 1868. Vestn. Zool.6, 81–82 (1972)Google Scholar
  2. Barnard, E.A.: Comparative biochemistry of digestive enzymes. In: Comparative animal physiology, 3rd ed. (ed. C.L. Prosser), pp. 139–146. Philadelphia: W. B. Saunders and Co. 1973Google Scholar
  3. Bernfeld, P.: Amylases, α- and β. In: Methods in enzymology, Vol. I (ed. S.P. Colowick, N.O. Kaplan), p. 149. New York: Academic Press 1955Google Scholar
  4. Bertkau, P.: Über den Verdauungsapparat der Spinnen. Arch. mikrosk. Anat. Entw. Mech.24, 398–451 (1885)Google Scholar
  5. Blandamer, A., Beechey, R.B.: The purification and properties of an α-amylase from the hepatopancreas ofCarcinus maenas, the common shore crab. Biochim. Biophys. Acta.118, 204–206 (1966)Google Scholar
  6. Blunck, M., Mommsen, T.P.: Systematic errors in fitting linear transformations of the Michaelis-Menten equation. Biometrica (in press) (1978)Google Scholar
  7. Brockerhoff, H., Hoyle, R.J., Hwang, P.C.: Digestive enzymes of the American lobster (Homarus americanus). J. Fish. Res. Bd. Can.27, 1357–1370 (1970)Google Scholar
  8. Brun, G.L., Wojtowicz, M.B.: A comparative study of the digestive enzymes in the hepatopancreas of Jonah crab (Cancer borealis) and rock crab (Cancer irroratus). Comp. Biochem. Physiol.53B, 387–391 (1976)Google Scholar
  9. Buonocore, V., Poerio, E., Silano, V., Tomasi, M.: Physical and catalytic properties of α-amylase fromTenebrio molitor larvae. Biochem. J.153, 621–625 (1976)Google Scholar
  10. Collatz, K.-G., Mommsen, T.: Die Struktur der emulgierenden Substanzen verschiedener Invertebraten. J. comp. Physiol.94, 339–352 (1974a)Google Scholar
  11. Collatz, K.-G., Mommsen, T.: Lebensweise und jahreszyklische Veränderungen des Stoffbestandes der SpinneTegenaria atrica C.L. Koch (Agelenidae). J. comp. Physiol.91, 91–109 (1974b)Google Scholar
  12. Dadd, R.H.: Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J. Insect Physiol.21, 1847–1854 (1975)Google Scholar
  13. Davies, M.T.: Universal buffer solution for ultraviolet spectrophotometry. Analyst84, 248–251 (1959)Google Scholar
  14. Ehrhardt, P., Voss, G.: Die Carbohydrasen der SpinnmilbeTetranychus urtieae Koch (Acari, Trombidiformes, Tetranychidae). Experientia17, 307 (1961)Google Scholar
  15. Fischer, E.H., Stein, E.A.: α-Amylases. In: The enzymes, 2nd ed., Vol. 4 (eds. P.D. Boyer, M. Lardy, K. Myrbäck), pp. 313–343. New York: Academic Press 1960Google Scholar
  16. Florkin, M., Stotz, E.H.: Comprehensive biochemistry. Chapter 4: Units of enzyme activity. Amsterdam, London, New York: Elsevier 1973Google Scholar
  17. Gabriel, O., Wang, S.F.: Determination of enzymatic activity in polyacrylamide gels-I. Enzymes catalyzing the conversion of non-reducing substrates to reducing products. Analyt. Biochem.27, 545–554 (1969)Google Scholar
  18. Greenwood, C.T., Milne, E.A.: Starch degrading and synthesizing enzymes: a discussion of their properties and action pattern. Adv. Carbohydrate Chem.23, 281–366 (1968)Google Scholar
  19. Hazel, J.R.: The regulation of cellular function by temperature-induced alterations in membrane composition. In: Effects of temperature on ectothermic organisms (ed. W. Wieser). Berlin, Heidelberg, New York: Springer 1973Google Scholar
  20. Hedrick, J.L., Smith, A.J.: Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch. Biochem. Biophys.126, 155–164 (1968)Google Scholar
  21. Hoffmann, K.-H., Marstatt, H.: The influence of temperature on catalytic efficiency of pyruvate kinase of crickets (Orthoptera: Gryllidae). J. Thermal Biol.2, 203–207 (1977)Google Scholar
  22. Irving, D.O., Watson, K.: Mitochondrial enzymes of tropical fish: A comparison with fish from cold-waters. Comp. Biochem. Physiol.54B, 81–92 (1976)Google Scholar
  23. Koch, A.L., Putnam, S.L.: Sensitive biuret method for determination of protein in an impure system such as whole bacteria. Analyt. Biochem.44, 239–245 (1971)Google Scholar
  24. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.)227, 680–685 (1970)Google Scholar
  25. Levitzki, A., Steer, M.L.: The allosteric activation of mammalian α-amylase by chloride. Eur. J. Biochem.41, 171–180 (1974)Google Scholar
  26. Low, P.S., Somero, G.N.: Environmental adaptation of muscle pyruvate kinases: Kinetic and structural differences related to temperature and pressure. J. Exp. Zool.198, 1–11 (1976)Google Scholar
  27. Markovitz, A., Klein, H.P., Fischer, E.H.: Purification, crystallization, and properties of the α-amylase ofPseudomonas saccharophila. Biochim. Biophys. Acta19, 267–273 (1956)Google Scholar
  28. Mommsen, T.P.: Digestive enzymes of a spider (Tegenaria atrica Koch)-II. Carbohydrases. Comp. Biochem. Physiol. (in press) (1978)Google Scholar
  29. Pickford, G.E.: Studies on the digestive enzymes of spiders. Trans. Conn. Acad. Arts Sci.35, 33–72 (1942)Google Scholar
  30. Podoler, H., Applebaum, S.W.: The α-amylase of the beetleCallosobruchus chinensis-I. Purification and action pattern. Biochem. J.121, 317–320 (1971)Google Scholar
  31. Robyt, J.F., Whelan, W.J.: Anomalous reduction of alkaline 3,5-dinitrosalicylate by oligosaccharides and its bearing on amylase studies. Biochem. J.95, 10–11p (1965)Google Scholar
  32. Sather, B.T.: A comparative study of amylases and proteinases in some decapod crustacea. Comp. Biochem. Physiol.28, 371–379 (1969)Google Scholar
  33. Schlottke, E.: Über die Verdauungsfermente der Vogelspinnen. Sber. Abh. naturf. Ges. Rostock3, Folge 6, 89–105 (1936)Google Scholar
  34. Segel, I.H.: Enzyme kinetics. New York: J. Wiley and Sons 1975Google Scholar
  35. Terra, W.R., Ferreira, C., DeBianchi, A.G.: Action pattern, kinetical properties and electrophoretical studies of an α-amylase present in midgut homogenates fromRhynchosciara americana (Diptera) larvae. Comp. Biochem. Physiol.56B, 201–209 (1977)Google Scholar
  36. Thoma, J.A., Spradlin, J.E., Dygert, S.: Plant and animal amylases. In: The enzymes, 3rd ed, Vol. 5 (eds. P.D. Boyer, M. Lardy), pp. 115–189. New York: Academic Press 1971Google Scholar
  37. Wodtke, E.: Discontinuities in the Arrhenius plots of mitochondrial membrane-bound enzyme systems from a poikilotherm: acclimation temperatures of carp affect transition temperatures. J. comp. Physiol.110, 145–157 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Thomas P. Mommsen
    • 1
  1. 1.Biological Institute IUniversity of FreiburgFreiburgFederal Republic of Germany

Personalised recommendations