Advertisement

Foundations of Physics

, Volume 19, Issue 1, pp 57–76 | Cite as

Chaos, ineffectiveness, and the contrast between classical and quantal physics

  • C. H. Woo
Article

Abstract

Classical and quantal physics are fundamentally different in the way that each deals with complexity. We examine both the algorithmic and the computational aspects of this difference. Any comprehensive deterministic theory must contain a certain ineffectiveness in producing long-term predictions of the future, whereas a probabilistic theory is not so handicapped. The relevance of these considerations to chaos is discussed.

Keywords

Probabilistic Theory Computational Aspect Deterministic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. E. Littlewood,A Mathematician's Miscellany (Methuen, London, 1953).Google Scholar
  2. 2.
    G. Chaitin,Algorithmic Information Theory (Cambridge University Press, Cambridge, 1987).Google Scholar
  3. 3.
    J. Ford, “What is chaos that we should be mindful of it?” inThe New Physics, S. Capelin and P. Davis, eds. (Cambridge University, Press, Cambridge, 1987).Google Scholar
  4. 4.
    J. E. Hopcroft and J. D. Ullman,Formal Languages and Their Relation to Automata (Addison-Wesley, Massachusetts, 1969), Chap. 10.Google Scholar
  5. 5.
    R. Rucker,Mind Tools (Houghton Mifflin, Boston, 1987).Google Scholar
  6. 6.
    B. O. Koopman,Proc. Natl. Acad. Sci. USA 17, 315 (1931).Google Scholar
  7. 7.
    P. Benioff,J. Stat. Phys. 29, 515 (1982).Google Scholar
  8. 8.
    R. Feynman,Optics News 11, 11 (1985); reprinted inFound. Phys. 16, 507 (1986).Google Scholar
  9. 9.
    D. Deutsch,Proc. R. Soc. Lond. A 400, 97 (1985).Google Scholar
  10. 10.
    M. Henon and C. Heiles,Astron. J. 69, 73 (1964).Google Scholar
  11. 11.
    Y. G. Sinai,Russ. Math. Surv. 25(2), 137 (1970).Google Scholar
  12. 12.
    M. V. Berry,Ann. Phys. 131, 163 (1981).Google Scholar
  13. 13.
    S. Wolfram,Phys. Rev. Lett. 54, 735 (1985).Google Scholar
  14. 14.
    E. B. Baun,Phys. Rev. Lett. 57, 2764 (1986).Google Scholar
  15. 15.
    S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi,Science 220, 671 (1983).Google Scholar
  16. 16.
    M. C. Gutzwiller,Physica D 7, 341 (1983).Google Scholar
  17. 17.
    J. Bekenstein,Phys. Rev. D 30, 1669 (1984).Google Scholar
  18. 18.
    Y. Aharonov and M. Vardi,Phys. Rev. D 21, 2235 (1980).Google Scholar
  19. 19.
    D. Anosov,Proc. Steklov Inst. Math. 90 (1967).Google Scholar
  20. 20.
    R. Bowen,J. Diff. Eqs. 18, 333 (1975).Google Scholar
  21. 21.
    W. E. Lamb, Jr., “Quantum chaos and the theory of measurement,” inChaotic Behaviro in Quantum Systems, G. Casati, ed. (Plenum, New York, 1985).Google Scholar
  22. 22.
    M. V. Berry and M. Tabor,Proc. R. Soc. Lond. A 356, 375 (1977).Google Scholar
  23. 23.
    M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros,Ann. Phys. (N.Y.) 122, 26 (1979).Google Scholar
  24. 24.
    I. C. Percival,J. Phys. B 6, 1229 (1973).Google Scholar
  25. 25.
    A. Peres,Phys. Rev. A 30, 1610 (1984).Google Scholar
  26. 26.
    W. E. Lamb, Jr., “Theory of quantum mechanical measurements,” preprint, 1986.Google Scholar
  27. 27.
    C. M. Caves,Phys. Rev. D 33, 1643 (1986).Google Scholar
  28. 28.
    G. J. Milburn and C. A. Holmes,Phys. Rev. Lett. 56, 2237 (1986).Google Scholar
  29. 29.
    G. J. Milburn,Phys. Rev. A 33, 674 (1986).Google Scholar
  30. 30.
    A. Peres, “Quantum chaos and the measurement problem,”Proceedings 1986 Como Conference, E. R. Pike and S. Sarkar, eds. (Pkenum, New York, 1987), p. 59.Google Scholar
  31. 31.
    R. Landauer,Phys. Rev. Lett. (Comments)58, 2150 (1987).Google Scholar
  32. 32.
    J. M. Blatt,Prog. Theor. Phys. 22, 745 (1959).Google Scholar
  33. 33.
    H. D. Zeh,Found. Phys. 1, 69 (1970).Google Scholar
  34. 34.
    L. D. Landau and E. M. Lifshitz,Statistical Physics (Pergamon, London, 1958).Google Scholar
  35. 35.
    R. Jencel,Foundations of Classical and Quantum Statistical Mechanics (Pergamon, London, 1969).Google Scholar
  36. 36.
    N. S. Krylov,Works on the Foundations of Statistical Physics (Princeton University Press, Princeton, 1979).Google Scholar
  37. 37.
    N. G. van Kampen,Physica 20, 603 (1954).Google Scholar
  38. 38.
    G. Chaitin,Int. J. Theor. Phys. 21, 941 (1982); reprinted inNew Directions in the Philosophy of Mathematics, T. Tymoczko, ed. (Birkhäuser, Boston, 1986).Google Scholar
  39. 39.
    A. Peres and W. H. Zurek,Am. J. Phys. 50, 807 (1982).Google Scholar
  40. 40.
    J. Rothstein,Int. J. Theor. Phys. 21, 327 (1982).Google Scholar
  41. 41.
    N. G. van Kampen, “A model for quantum-mechanical measurement,”Proceedings, 1986 Como Conference, E. R. Pike and S. Sarkar, eds. (Plenum, New York, 1987), p. 215.Google Scholar
  42. 42.
    M. C. Gutzwiller,Physica D 5 183 (1982).Google Scholar
  43. 43.
    G. Casati, B. V. Chirikov, I. Guaneri, and D. L. Shepelyansky,Phys. Rev. Lett. 57, 823 (1986).Google Scholar
  44. 44.
    J. Ford,Nature 325, 19 (1987).Google Scholar
  45. 45.
    E. Joos and H. D. Zeh,Z. Phys. B 59, 223 (1985).Google Scholar
  46. 46.
    N. F. Mott,Proc. R. Soc. Lond, A 126, 79 (1929); reprinted inQuantum Theory of Measurement, J. A. Wheeler and W. H. Zurek, eds. (Princton University Press, Princeton, 1982).Google Scholar
  47. 47.
    C. H. Woo, UCRL (Berkeley) Report 10431, 1962.Google Scholar
  48. 48.
    H. Stein,Nous 18, 635 (1984).Google Scholar
  49. 49.
    J. B. Hartle, 1986 Cargese Lecture, “Gravitation in Astrophysics,” B. Carter and J. B. Hartle, eds. (Plenum, NY, 1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • C. H. Woo
    • 1
  1. 1.Center for Theoretical Physics, Department of Physics and AstronomyUniversity of MarylandCollege Park

Personalised recommendations