Advertisement

Journal of Materials Science

, Volume 14, Issue 10, pp 2446–2452 | Cite as

Failure of amorphous polystyrene

  • J. E. RitterJr
  • J. M. Stevens
  • Karl Jakus
Papers

Abstract

The failure behaviour of amorphous polystyrene was studied in methanol and ambient air under constant load and strain rate conditions. The good correlation found between fracture mechanics theory and the test results of both crazing and fracture indicates that fracture mechanics theory can be used in predicting failure of amorphous polystyrene. From the fracture mechanics analysis of the results it is inferred that the kinetics associated with craze initiation and crack propagation are similar and that the inherent flaw responsible for failure first initiates the craze in which a crack is then formed. Both the distribution of inherent flaws and the kinetics of crazing and fracture are dependent on the test environment.

Keywords

Fracture Strength Inherent Flaw Strain Rate Condition Stress Rupture Test Constant Strain Rate Test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Williams andG. P. Marshall,Proc. Roy. Soc. Lond. A342 (1975) 55.CrossRefGoogle Scholar
  2. 2.
    C. P. Marshall, L. E. Culver andJ. G. Williams,Int. J. Fracture,9 (1973) 295.CrossRefGoogle Scholar
  3. 3.
    Idem, Proc. Roy. Soc. Lond. A319 (1970) 165.CrossRefGoogle Scholar
  4. 4.
    J. G. Williams,Polymer Eng. Sci. 17 (1977) 144.CrossRefGoogle Scholar
  5. 5.
    R. J. Young andP. W. R. Beaumont,Polymer 17 (1976) 717.CrossRefGoogle Scholar
  6. 6.
    P. W. R. Beaumont andR. J. Young,J. Mater. Sci. 10 (1975) 1334, 1343.CrossRefGoogle Scholar
  7. 7.
    K. Matsushige, S. V. Radcliffe andE. Baer,ibid. 10 (1975) 883.CrossRefGoogle Scholar
  8. 8.
    E. H. Andrew andL. Bevan,Polymer 13 (1972) 337.CrossRefGoogle Scholar
  9. 9.
    A. S. Argon, J. G. Hannoosh andM. M. Salame, “Fracture, 1977,” Vol. 1, Edited by D. M. R. Taplin (University of Waterloo Press, Waterloo, Ontario, Canada, 1977) pp. 445–470.Google Scholar
  10. 10.
    Y. W. Mai,J. Mater. Sci. 10 (1975) 943.CrossRefGoogle Scholar
  11. 11.
    Idem, ibid. 11 (1976) 303.CrossRefGoogle Scholar
  12. 12.
    J. Murray andD. Hull,J. Mater. Sci. 6 (1971) 1277.CrossRefGoogle Scholar
  13. 13.
    Idem, J. Polymer Sci. (A-2) 8 (1970) 1521.Google Scholar
  14. 14.
    M. J. Doyle, A. Marana, E. Orowan andS. T. Stork,Proc. Roy. Soc. Lond. A329 (1972) 137.CrossRefGoogle Scholar
  15. 15.
    P. Behan, M. Bevis andD. Hull,Proc. Roy. Soc. Lond. A343 (1975) 525.CrossRefGoogle Scholar
  16. 16.
    R. P. Kambour,J. Polymer Sci.: Macromol. Rev. 7 (1973) 1.Google Scholar
  17. 17.
    A. G. Evans,Int. J. Fracture 10 (1974) 251.CrossRefGoogle Scholar
  18. 18.
    K. Jakus, D. C. Coyne andJ. E. Ritter Jr.,J. Mater. Sci. (to be published).Google Scholar
  19. 19.
    A. G. Evans andT. G. Langdon,Prog. Mater. Sci. 21 (1976) 171.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • J. E. RitterJr
    • 1
  • J. M. Stevens
    • 1
  • Karl Jakus
    • 1
  1. 1.Mechanical Engineering DepartmentUniversity of MassachusettsAmherstUSA

Personalised recommendations