Advertisement

Journal of Materials Science

, Volume 14, Issue 10, pp 2411–2421 | Cite as

Self-diffusion of14C in polycrystalline β-SiC

  • M. H. Hon
  • R. F. Davis
Papers

Abstract

The14C self-diffusion coefficients for both lattice (D lc * ) and grain boundary (D bc * ) transport in high purity CVDβ-SiC are reported for the range 2128 to 2374 K. The Suzuoka analysis technique revealed thatD bc * is 105 to 106 faster thanD bc * ; the respective equations are given by
$$\begin{gathered} D_{I c}^* = (2.62 \pm 1.83) \times 10^8 exp\left\{ { - \frac{{(8.72 \pm 0.14)eV/atom}}{{kT}}} \right\}cm^2 sec^{ - 1} \hfill \\ D_{b c}^* = (4.44 \pm 2.03) \times 10^7 exp\left\{ { - \frac{{(5.84 \pm 0.09)eV/atom}}{{kT}}} \right\}cm^2 sec^{ - 1} \hfill \\ \end{gathered} $$

A vacancy mechanism is assumed to be operative for lattice transport. From the standpoint of crystallography and energetics, reasons are given in support of a path of transport which involves an initial jump to a vacant tetrahedral site succeeded by a jump to a normally occupied C vacancy.

Keywords

Boundary Diffusion Volume Diffusion Diffusion Profile Diffusion Anneal Diffusion Activation Energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Prochazka, Proceedings of the Conference on Ceramics for High Performance Applications, Hyannis, Mass. 1973, edited by J. J. Burke, A. E. Gorum and R. N. Katz (Brook Hill Pub. Co., Boston, 1975) p. 220.Google Scholar
  2. 2.
    J. A. Coppola andC. H. McMurtry, presented at the American Chemical Society Symposium, “Ceramics in the Service of Man”, Washington, D.C., 1976.Google Scholar
  3. 3.
    R. N. Ghoshtagore andR. L. Coble,Phys. Rev. 143 (1966) 623.CrossRefGoogle Scholar
  4. 4.
    J. D. Hong, Ph. D. Thesis, North Carolina State University (1978).Google Scholar
  5. 5.
    J. D. Hong andR. F. Davis, paper submitted for publication.Google Scholar
  6. 6.
    Y. A. Vodakov andE. N. Mokhov, “Silicon Carbide, 1973”, edited by R. C. Marshall, J. W. Faust Jr and C. E. Ryan (University of South Carolina Press, Columbia, S. C., 1974) p. 508.Google Scholar
  7. 7.
    A. H. G. Demesquite,Acta Cryst. 23 (1967) 610.CrossRefGoogle Scholar
  8. 8.
    J. W. Faust, Jr., “Silicon Carbide,” edited by J. R. O'Connor and J. Smiltens (Pergamon Press, New York, 1960) p. 403.Google Scholar
  9. 9.
    V. J. Jennings,Mater. Res. Bull. 4 (1969) 5199.Google Scholar
  10. 10.
    P. T. B. Shaffer,J. Appl. Phys. 39 (1968) 5332.CrossRefGoogle Scholar
  11. 11.
    J. D. Hong andR. F. Davis,Mater. Sci. and Eng. 33 (1978) 145.CrossRefGoogle Scholar
  12. 12.
    R. F. Davis, J. H. Hong andM. Hon, “Processing of Crystalline Ceramics”, edited by H. Palmour III, R. F. Davis and T. M. Hare (Plenum Press, New York, 1978.)Google Scholar
  13. 13.
    J. D. Hong, W. E. Griffin andR. F. Davis,Rev. of Sci. Instruments 49 (1978) 83.CrossRefGoogle Scholar
  14. 14.
    J. C. Fisher,J. Appl. Phys. 22 (1951) 74.CrossRefGoogle Scholar
  15. 15.
    T. Suzuoka,J. Phys. Soc. Japan,19 (1964) 839.CrossRefGoogle Scholar
  16. 16.
    H. S. Levine andC. J. MacCallum,J. Appl. Phys. 31 (1960) 3.CrossRefGoogle Scholar
  17. 17.
    P. G. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963).Google Scholar
  18. 18.
    S. M. Sze andL. Y. Wei,Phys. Rev. 124 (1961) 1.CrossRefGoogle Scholar
  19. 19.
    T. S. Lundy andJ. I. Federer,Trans. Met. Soc. of AIME 224 (1962) 12.Google Scholar
  20. 20.
    B. B. Yu andR. F. Davis,Phys. Stat. Sol. (a) 51 (1979) 261.CrossRefGoogle Scholar
  21. 21.
    M. H. Hon, Ph. D. Thesis, North Carolina State University (1978).Google Scholar
  22. 22.
    T. S. Lundy andR. A. Padgett,Trans. Met. Soc. of AIME 242 (1968) 1897.Google Scholar
  23. 23.
    R. N. Ghoshtagore, Ph. D. Thesis, Massachusetts Institute of Techology (1965).Google Scholar
  24. 24.
    R. W. Balluffi andA. L. Ruoff,J. Appl. Phys. 34 (1963) 1634.CrossRefGoogle Scholar
  25. 25.
    S. Sarian andJ. M. Criscione,ibid. 38 (1967) 1794.CrossRefGoogle Scholar
  26. 26.
    M. H. Hon, R. F. Davis andD. E. Newbury, to be published.Google Scholar
  27. 27.
    D. K. Dawson, L. W. Barr andR. A. Pitt-Pladdy,Brit. J. App. Phys. 17 (1966) 657.CrossRefGoogle Scholar
  28. 28.
    H. H. Woodbury andG. W. Ludwig,Phys. Rev. 127 (1961) 1083.CrossRefGoogle Scholar
  29. 29.
    G. E. G. Hardeman,J. Phys. Chem. Solids 24 (1963) 1223.CrossRefGoogle Scholar
  30. 30.
    W. J. Choyke andL. Patrick,Phys. Rev. B. 2 (1970) 4959.CrossRefGoogle Scholar
  31. 31.
    S. Yamada andH. Kuwabara, “Silicon Carbide — 1973” edited by R. C. Marshall, J. W. Faust, Jr and C. E. Ryan (University of South Carolina Press, Columbia, S. C., 1974) p. 305.Google Scholar
  32. 32.
    S. H. Hagen andA. W. C. Vankemende,Phys. Stat. Sol. (a). 33 (1976) 97.CrossRefGoogle Scholar
  33. 33.
    G. J. Dienes,J. Appl. Phys. 23 (1952) 11.CrossRefGoogle Scholar
  34. 34.
    L. Pauling, “The Chemical Bond” 3rd edn. (Cornell University Press, Ithaca, New York, 1960).Google Scholar
  35. 35.
    R. C. Gifkins,Mat. Sci. Eng. 2 (1967) 181.CrossRefGoogle Scholar
  36. 36.
    C. Zener, “Imperfections in Nearly Perfect Crystals”, edited by W. Shockley (J. Wiley and Sons, New York, 1952) p. 289.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • M. H. Hon
    • 1
  • R. F. Davis
    • 1
  1. 1.Department of Materials Engineering and Engineering Research Services DivisionNorth Carolina State UniversityRaleighUSA

Personalised recommendations