Journal of Materials Science

, Volume 14, Issue 10, pp 2391–2396 | Cite as

X-ray high pressure study of polyvinylidene fluoride

  • B. A. Newman
  • C. H. Yoon
  • K. D. Pae


An X-ray high pressure study at room temperature of both phase I and phase II crystal structures of polyvinylidene fluoride has been carried out. At room temperature both phases are stable up to pressures greater than 14 kbar. The variation of lattice compressive strains with pressure could be fitted to the Tait equation with little scatter and the variation of the unit cell parameters with pressure computed. The bulk lattice compressibilities of both phase I and phase II was found to be considerably less than that of polyethylene with the lowest compressibility being found for the phase I structure. The linear lattice compressibilities are extremely anisotropic with the lowest compressibility being in the chain direction as expected. However, at the highest pressures, for the case of phase II it was observed that this anisotropy was greatly reduced. Applications of these data to the unique piezo-electric activity of PVF2 are pointed out.


Compressibility Chain Axis Chain Direction Bulk Compressibility Lower Compressibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ito andH. Marui,Polymer J. 2 (1971) 768.CrossRefGoogle Scholar
  2. 2.
    H. D. Flack,J. Polymer Sci. A-2 10 (1972) 1799.CrossRefGoogle Scholar
  3. 3.
    D. C. Bassett, S. Block andS. J. Piermarini,J. Appl. Phys. 45 (1974) 4146.CrossRefGoogle Scholar
  4. 4.
    T. P. Sham, B. A. Newman andK. D. Pae,J. Mater. Sci. 12 (1977) 771.CrossRefGoogle Scholar
  5. 5.
    K. D. Pae, B. A. Newman andT. P. Sham,ibid. 12 (1977) 1793.CrossRefGoogle Scholar
  6. 6.
    B. A. Newman, T. P. Sham andK. D. Pae,J. Appl. Phys. 48 (1977) 4092.CrossRefGoogle Scholar
  7. 7.
    M. Yasuniwa, R. Enoshita andT. Takemura,Japan. J. Appl. Phys. 15 (1976) 1421.CrossRefGoogle Scholar
  8. 8.
    T. Ito,Sen-I Gakkaishi 32 (1976) 46.CrossRefGoogle Scholar
  9. 9.
    W. W. Doll andJ. B. Lando,J. Macromol. Sci. B2 (1968) 219.CrossRefGoogle Scholar
  10. 10.
    Idem, ibid. B4 (1970) 889.CrossRefGoogle Scholar
  11. 11.
    R. Hasagawa, M. Kokayashi andH. Tadokoro,Polymer J. 3 (1972) 591.CrossRefGoogle Scholar
  12. 12.
    R. Hasegawa, Y. Takahashi, Y. Chatani andH. Tadokoro,ibid. 3 (1972) 600.CrossRefGoogle Scholar
  13. 13.
    K. Matsushige, K. Nagata andT. Takemura,Japan. J. Appl. Phys. 17 (1978) 467.CrossRefGoogle Scholar
  14. 14.
    B. A. Newman, T. P. Sham andK. D. Pae,J. Mater. Sci. 12 (1977) 1064.CrossRefGoogle Scholar
  15. 15.
    J. B. Lando, H. G. Olf andA. Peterlin,J. Polymer Sci. A-1 4 (1966) 941.CrossRefGoogle Scholar
  16. 16.
    T. Ito,J. Cryst. Soc. Japan 16 (1974) 318.CrossRefGoogle Scholar
  17. 17.
    M. G. Broadhurst, G. T. Davis, J. E. McKinney andR. E. Collins,Bull. Amer. Phys. Soc. 23 (1978) 369.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • B. A. Newman
    • 1
  • C. H. Yoon
    • 1
  • K. D. Pae
    • 1
  1. 1.High Pressure Research Laboratory and Department of Mechanics and Materials ScienceRutgers UniversityPiscatawayUSA

Personalised recommendations