Advertisement

Journal of Materials Science

, Volume 14, Issue 10, pp 2353–2365 | Cite as

Urania-yttria solid solution electrodes for high-temperature electrochemical applications

  • S. P. S. Badwal
  • D. J. M. Bevan
Article

Abstract

Measurements of total electrical conductivity on fluorite-type U3O8-Y2O3 (Sc2O3) solid solutions have been made as a function of temperature and U/Y(Sc) ratio. The following compositions were studied: (U0.7Y0.3)O2+x, (U0.6Y0.4)O2+x, (U0.5Y0.5)O2+x, (U0.45Y0.55)O2+x, (U0.4Y0.6)O2+x, (U0.35Y0.65)O2+x, (U0.3Y0.7)O2−x, (U0.5Sc0.5)O2+x and (U0.38Sc0.62)O2+x. Preliminary measurements on the latter two compositions were carried out for comparison purposes. The maximum conductivity value occurred for the U3O8-Sc2O3 solid solutions, and for (U0.7Y0.3)O2+x in the U3O8-Y2O3 system. The conductivity in these fluorite-type solid solutions is mainly electronic, the conduction mechanism being hopping-type. The energy of activation lay between 25 and 40 kJ mol−1. The (U0.3Y0.7)O2−x composition appeared to be an ionic conductor with an activation energy of ∼110 kJ mol−1 below 800 to 850° C. The diffusion of cations of U3O8-Y2O3 into ZrO2-Y2O3 was studied during passage of current: no observable diffusion occurred over the period of current passage (384 h). Attempts were made to determine the anionic contribution to the total conductivity in U3O8-Y2O3 solid solutions using the blocking electrode technique. Results indicated that complete isolation of the specimen-blocking electrode (YSZ) interface from the ambient gases is necessary if such measurements are to be reliable. The diffusion coefficients calculated from the conductivity data using the Nernst-Einstein relation were two orders of magnitude higher than those obtained by a direct method.

Keywords

Transport Number Platinum Foil Chemical Diffusion Coefficient Alumina Ring Ionic Transport Number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. H. Etsell andS. N. Flengas,J. Electrochem. Soc. 118 (1971) 1890.CrossRefGoogle Scholar
  2. 2.
    J. Weisbart andR. Ruka,ibid. 109 (1962) 723.CrossRefGoogle Scholar
  3. 3.
    B. H. P. Ltd. Australia, CRL Reports on HighTemperature Fuel Cells (1969–72), Private communication.Google Scholar
  4. 4.
    F. J. Rohr, in “Solid Electrolytes”, edited by P. Hagenmuller and W. van Gool (Academic Press, London, New York, 1978) p. 431.CrossRefGoogle Scholar
  5. 5.
    “Proceedings of the Workshop on High Temperature Solid Oxide Fuel Cells”, edited by H. S. Isaacs, S. Srinivasan and I. L. Harry (U.S. Dept. of Energy BNL 50756/TID-4500, 1977).Google Scholar
  6. 6.
    B. C. H. Steele,“Electrode Processes in Solid State Ionics”, edited by M. Kleitz and J. Dupuy (Reidel, Dordrecht, 1976) p. 367.CrossRefGoogle Scholar
  7. 7.
    H. S. Spacil andC. S. Tedmon Jr,J. Electrochem. Soc. 116 (1969) 1618,1627.CrossRefGoogle Scholar
  8. 8.
    H. S. Spacil andK. W. Browall,ibid. 121, (1974) Abstr. 231 (The Electrochemical Soc. Inc., New York Meeting, New York, 1974).Google Scholar
  9. 9.
    A. Aypar,Technical J. 1 (1974) 137.Google Scholar
  10. 10.
    T. Takahashi, in “Physics of Electrolytes”, Vol. 2, edited by J. Hladik (Academic Press, London, New York, 1972) p. 989.Google Scholar
  11. 11.
    J. W. Patterson,J. Electrochem. Soc. 118 (1971) 1033.CrossRefGoogle Scholar
  12. 12.
    H. Tannenberger, H. Schachner andP. Kovacs,Proc. J. Intl. Etude Piles Combust. 1-III (1965) 19.Google Scholar
  13. 13.
    J. W. Patterson, E. C. Bogren andR. A. Rapp,J. Electrochem. Soc. 114 (1967) 752.CrossRefGoogle Scholar
  14. 14.
    H. L. Tuller andA. S. Nowick,ibid. 122 (1975) 255.CrossRefGoogle Scholar
  15. 15.
    R. N. Blumenthal, F. S. Brugner andJ. E. Garnier,ibid. 120 (1973) 1230.CrossRefGoogle Scholar
  16. 16.
    T. Kudo andH. Obayashi,ibid. 122 (1975) 142.CrossRefGoogle Scholar
  17. 17.
    R. M. Dell andA. Hooper, in “Solid Electrolytes”, edited by P. Hagenmuller and W. van Gool (Academic Press, London, New York, 1978) P. 291.CrossRefGoogle Scholar
  18. 18.
    H. Tannenberger andH. Siegert, in “Fuel Cell Systems — II”, Advances in Chemistry Series, Vol. 90 (American Chemical Society, Washington, D.C., 1969) 281.Google Scholar
  19. 19.
    O. Antonsen, W. Baukal andW. Fischer,The Brown Boveri Review 53 (1966) 21.Google Scholar
  20. 20.
    D. W. White,Rev. Energ. Primaire 2 (1966) 10.Google Scholar
  21. 21.
    C. S. Tedmon, Jr, H. S. Spacil andS. P. Mitoff,J. Electrochem. Soc. 116 (1969) 1170.CrossRefGoogle Scholar
  22. 22.
    D. D. Button andD. H. Archer, Meeting of theAmer. Ceram. Soc. Bull. 45 (1966) 403.Google Scholar
  23. 23.
    T. H. Etsell andS. N. Flengas,Chem. Rev. 70 (1970) 339.CrossRefGoogle Scholar
  24. 24.
    Von F. Hund, U. Peetz andG. Kottenhahn,Z. Anorg. Allg. Chem. 278 (1955) 184.CrossRefGoogle Scholar
  25. 25.
    J. S. Anderson, I. F. Ferguson andL. E. J. Roberts,J. Inorg. Nucl. Chem. 1 (1955) 340.CrossRefGoogle Scholar
  26. 26.
    S. P. S. Badwal, D. J. M. Bevan andJ.O'M. Bockris, to be published.Google Scholar
  27. 27.
    E. Summerville, Ph.D. Thesis, The Flinders University of South Australia (1973).Google Scholar
  28. 28.
    Von F. Hund andU. Peetz,Z. anorg. allg. Chem. 271 (1952) 6.CrossRefGoogle Scholar
  29. 29.
    W. Trzebiatowski andR. Horyn,Bull. De L'Académie Polonaise Des Sciences XIII (1975) 303.Google Scholar
  30. 30.
    S. P. S. Badwal, Ph. D. Thesis, The Flinders University of S. A., Australia (1977).Google Scholar
  31. 31.
    H. J. De Bruin andR. L. Clark,Rev. Sci. Instrum 35 (1964) 227.CrossRefGoogle Scholar
  32. 32.
    H. J. De Bruin, A. F. Moodie andC. E. Warble,J.Mater. Sci. 7 (1972) 909.CrossRefGoogle Scholar
  33. 33.
    G. J. Janz andJ. D. E. McIntyre,J. Electrochem. Soc. 108 (1961) 272.CrossRefGoogle Scholar
  34. 34.
    B. H. S. Day,Metals Australia 5 (1973) 34.Google Scholar
  35. 35.
    R. H. Rousselot,Metal finishing 57 (1959) 56.Google Scholar
  36. 36.
    L. Heyne,N.B.S. (US) Spec. Publ. No. 296 (1967) 149.Google Scholar
  37. 37.
    G. J. Dudley andB. C. H. Steele,J. Solid State Chem. 21 (1977) 1.CrossRefGoogle Scholar
  38. 38.
    D. J. M. Bevan andJ. Kordis,J. Inorg. Nucl. Chem. 26 (1964) 1509.CrossRefGoogle Scholar
  39. 39.
    R. N. Blumenthal andJ. E. Laubach, “Anistropy in Single-Crystal Refractory Compounds”, edited by W. Vahldiek and S. A. Mersol (Plenum Press, New York, 1968) p. 138.Google Scholar
  40. 40.
    R. N. Blumenthal andR. J. Panlener,J. Phys. Chem. Solids 31 (1970) 1190.CrossRefGoogle Scholar
  41. 41.
    R. N. Blumenthal, P. W. Lee andR. J. Panlener,J. Electrochem. Soc. 118 (1971) 123.CrossRefGoogle Scholar
  42. 42.
    R. N. Blumenthal andR. L. Hofmaier,ibid. 121 (1974) 126.CrossRefGoogle Scholar
  43. 43.
    R. N. Blumenthal, R. J. Panlener andJ. E. Garnier,J. Phys. Chem. Solids 36 (1975) 1213.CrossRefGoogle Scholar
  44. 44.
    R. N. Blumenthal andR. K. Sharma,J. Solid State Chem. 13 (1975) 360.CrossRefGoogle Scholar
  45. 45.
    G. J. Van Handel andR. N. Blumenthal,J. Electrochem. Soc. 121 (1974) 1198.CrossRefGoogle Scholar
  46. 46.
    P. A. Schumann, Jr. andL. S. Sheiner,Rev. Sci. Instrum. 35 (1964) 959.CrossRefGoogle Scholar
  47. 47.
    W. Gee andM. Green,J. Phys. E. 4 (1971) 70.CrossRefGoogle Scholar
  48. 48.
    R. K. Willardson andJ. W. Moody, “Uranium Dioxide”, edited by S. Belle (USAEC, Washington, D.C., 1961) p. 243.Google Scholar
  49. 49.
    J. L. Bates, C. A. Hinman andT. Kawada,J. Amer. Ceram. Soc. 50 (1967) 652.CrossRefGoogle Scholar
  50. 50.
    S. Amelinckx et al., “Physical Properties of UO2 Single Crystals” (centre Etude Energie Nucl., Mol, EUR 1414. e, 1965).Google Scholar
  51. 51.
    J. F. Wadier, CAE-R4507 (Atomic Energy Commission, C.E.N., Fontenay-aux-Roses, France 1973).Google Scholar
  52. 52.
    E. Stadlbauer, U. Wichmann, U. Lott andC. Keller,J. Solid State Chem. 10 (1974) 341.CrossRefGoogle Scholar
  53. 53.
    E. A. Aitken andR. A. Joseph,J. Phys. Chem. 70 (1966) 1090.CrossRefGoogle Scholar
  54. 54.
    H. G. Diehl andC. Keller,J. Solid State Chem. 3 (1971) 621.CrossRefGoogle Scholar
  55. 55.
    H. Obayashi andT. Kudo, in “Solid State Chemistry of Energy Conversion and Storage”, Advances in Chemistry Series, Vol. 163, edited by J. B. Goodenough and M. S. Whittingham Chemical Society, Washington, D.C., 1977) p. 316.Google Scholar
  56. 56.
    A. B. Lidiard,J. Nucl. Mater. 19 (1966) 106.CrossRefGoogle Scholar
  57. 57.
    A. B. Auskern andJ. Belle,ibid. 3 (1961) 311.CrossRefGoogle Scholar
  58. 58.
    S. Yajima, H. Furuya andT. Hirai,ibid. 20 (1966) 162.CrossRefGoogle Scholar
  59. 59.
    J. R. Johnson andH. G. Sowman in “UO2 Properties and Nuclear Applications”, edited by J. Belle, (U.S. Atomic Energy Commission, Washington D.C. 1961) p. 321.Google Scholar
  60. 60.
    R. J. Feriauf, in “Physics of Electrolytes”, edited by J. Haldik (Academic Press, London 1972) p. 1103.Google Scholar
  61. 61.
    R. J. Feriauf,J. Appl. Phys. 33 (1962) 494.CrossRefGoogle Scholar
  62. 62.
    S. P. S. Badwal andD. J. M. Bevan,Aust. J. Ceram. Soc. 14 (1978) 1.Google Scholar
  63. 63.
    W. L. Roth andR. J. Ramanczuk,J. Electrochem. Soc. 116 (1969) 975.CrossRefGoogle Scholar
  64. 64.
    B. C. H. Steele andJ. M. Floyd,Proc. Brit. Ceram. Soc. 19 (1971) 55.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • S. P. S. Badwal
    • 1
  • D. J. M. Bevan
    • 1
  1. 1.School of Physical SciencesThe Flinders University of South AustraliaBedford ParkAustralia

Personalised recommendations