Journal of Paleolimnology

, Volume 14, Issue 2, pp 185–223

The representation of diatom communities by fossil assemblages in a small acid lake

  • N. G. Cameron


The representative quality of fossil diatom assemblages in the recent sediment of a lake is compared with its contemporary diatom flora. In April 1986 experimental liming of the catchment of a small acidified lake, Loch Fleet (Galloway, U.K.), produced immediate changes in water quality. Lakewater pH rose from a mean of approximately 4.5 to 6.5, and in the two year period following liming a consistently higher pH was maintained. The marked response of diatom species to changing water quality provided a means of tracing events from living communities to the fossil assemblages. Diatom periphyton and plankton were sampled during a 20 month period and archived material was used to characterise earlier diatom communities. A comparison is made between living diatom communities and diatom assemblages collected by sediment traps and from sediment cores taken during the same period.

Following liming, the diatom communities were found to respond within days or weeks to the changes in water quality. There is an initial change from acidobiontic communities, dominated byTabellaria quadriseptata, to dominance by the acidophilous speciesEunotia incisa andPeronia fibula. However, in the epipsammic community the acidobiontic speciesTabellaria binalis fo.elliptica remains abundant after liming. Approximately one year after liming the abundances of species such asAchnanthes minutissima andBrachysira vitrea increase in the epilithon, epiphyton and epibryon, whilst in the epipsammonT. binalis fo.elliptica is replaced by smallEunotia spp. andAchnanthes altaica. During the latter part of 1987 and in 1988, despite a stable pH, fluctuating patterns of species abundances are seen in the epilithon, epiphyton and epibryon whilst the species composition of the epipsammon remains relatively stable. Spring blooms of the planktonic speciesSynedra acus andAsterionella formosa occur during 1988 and 1989 respectively.

Sediment trapping, which began in April 1987, records shifts in species composition corresponding with those seen in the epilithon, epiphyton and epibryon and with the blooms of planktonic species. The signal from the smaller, and probably less easily transportable, epipsammic community is not so clearly discernible. Although the fundamental record of the sediment traps is one from living diatom communities, the appearance of taxa ‘extinct’ during the post-liming period reflects a low, but significant level of sediment resuspension.

In contrast to the rapid response of living communities and their record in sediment traps, sediment cores do not begin to reflect changes in diatom composition until about 14 months after the initial liming. The first appearance of circumneutral taxa in significant abundance occurs only approximately 17 months after liming. The delayed reaction of sediment assemblages cannot be attributed principally to a slow rate of transport from the littoral to the profundal zone. Time-averaging processes within the sediment appear to be the main cause of the lag in core response. In contrast, blooms of planktonic species are quickly reflected in the stratigraphy of cores, but indicate that a considerable degree of downward mixing occurs. Comparison of the time trajectories of whole species assemblages in living communities, sediment traps and core surface sediments shows that the direction of change is similar in all three, but that the magnitude of change is attenuated in sediment assemblages.

Key words

taphonomy representativity diatoms acidification liming sediment traps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, P. A. & D. E. G. Briggs, (eds.), 1991. Taphonomy: releasing the data locked in the fossil record. Plenum Press, New York, 560 pp.Google Scholar
  2. Anderson, N. J., 1986. Diatom biostratigraphy and comparative core correlation within a small lake basin. In H. Löffler & J. Bobeck (eds.), Proceedings of the fourth international symposium on palaeolimnology. Junk, Dordrecht: 105–112.Google Scholar
  3. Anderson, N. J., 1990. Variability of sediment diatom assemblages in an upland, wind-stressed lake (Loch Fleet, Galloway, SW Scotland). J. Paleolimnol. 4: 43–59.Google Scholar
  4. Anderson, N. J. & R. W. Battarbee, 1985. Loch Fleet: bathymetry and sediment distribution. Working paper no. 10, Palaeoecology Research Unit, Department of Geography, University College London, 18 pp.Google Scholar
  5. Anderson, N. J., R. W. Battarbee, P. G. Appleby, A. C. Stevenson, F. Oldfield, J. Darley & G. Glover, 1986. Palaeolimnological evidence for the acidification of Loch Fleet. Working paper no. 17, Palaeoecology Research Unit, Department of Geography, University College London, 70 pp.Google Scholar
  6. Barker, P., 1992. Differential diatom dissolution in Late-Quaternary sediments from Lake Manyara, Tanzania: an experimental approach. J. Paleolimnol. 7:235–251.Google Scholar
  7. Battarbee, R. W., 1978. Observations on the recent history of Lough Neagh and its drainage basin. Phil. Trans. r. Soc. Lond. B 281: 303–345.Google Scholar
  8. Battarbee, R. W., 1979. Early algological records: help or hindrance to palaeolimnology? Nova Hedwigia 64: 379–393.Google Scholar
  9. Battarbee, R. W., 1981a. Changes in the diatom microflora of a eutrophic lake since 1900 from a comparison of old algal samples and the sedimentary record. Holarct. Ecol. 4: 73–81.Google Scholar
  10. Battarbee, R. W., 1981b. Diatom and Chrysophyceae microstratigraphy of the annually laminated sediments of a small meromictic lake. Striae 14: 104–109.Google Scholar
  11. Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. r. Soc. Lond. B 305: 451–477.Google Scholar
  12. Battarbee, R. W., 1986. Diatom analysis. In B. E. Berglund (ed.), Handbook of Holocene palaeoecology and palaeohydrology. John Wiley, Chichester: 527–570.Google Scholar
  13. Battarbee, R. W., 1992. Recent paleolimnology and diatom-based environmental reconstruction. In L. C. K. Shane & E. J. Cushing (eds.), Quaternary Landscapes. University of Minnesota Press, Minneapolis: 129–174.Google Scholar
  14. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184–188.Google Scholar
  15. Battarbee, R. W., N. J. Anderson, P. G. Appleby, R. J. Flower, S. C. Fritz, E. Y. Haworth, S. Higgitt, V. J. Jones, A. M. Kreiser, M. A. R. Munro, J. Natkanski, F. Oldfield, S. T. Patrick, N. G. Richardson, B. Rippey & A. C. Stevenson, 1988. Lake acidification in the United Kingdom 1800–1986. Ensis Publishing, London, 68 pp.Google Scholar
  16. Behrensmeyer, A. K. & S. M. Kidwell, 1985. Taphonomy's contributions to palaeobiology. Paleobiol. 11: 105–119.Google Scholar
  17. Beyens, L. & L. Denys, 1982. Problems of diatom analysis of deposits: allochthonous valves and fragmentation. Geol. Mijnbouw 61: 159–163.Google Scholar
  18. Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc. Lond. B. 327: 263–278.Google Scholar
  19. Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweiz. Z. Hydrobiol. 42: 15–54.Google Scholar
  20. Blomqvist, S. & L. Håkanson, 1981. A review on sediment traps in aquatic environments. Arch. Hydrobiol. 91: 101–132.Google Scholar
  21. Bradbury, J. P., 1975. Diatom stratigraphy and human settlement in Minnesota. Geol. Soc. Am. Special Paper 171.Google Scholar
  22. Briggs, D. E. G. & P. R. Crowther, 1990. Palaeobiology: a synthesis. Blackwell Scientific Publications, Oxford, 583 pp.Google Scholar
  23. Camburn, K. E. & J. C. Kingston, 1986. The genusMelosira from soft-water lakes with special reference to Northern Michigan, Wisconsin, and Minnesota. In J. P. Smol, R. W. Battarbee, R. B. Davis & J. Meriläinen (eds.), Diatoms and lake acidity. Junk, Dordrecht: 17–34.Google Scholar
  24. Camburn, K. E., J. C. Kingston & D. F. Charles, 1986. PIRLA DIATOM ICONOGRAPH. Report No. 3. PIRLA unpublished report series, Bloomington, IN. (53 photographic plates, 1059 figures).Google Scholar
  25. Cameron, N. G., 1990. Representation of diatom communities by fossil assemblages in Loch Fleet, Galloway, Scotland. Ph.D. thesis, University of London, 291 pp.Google Scholar
  26. Carter, J. & A. E. Bailey-Watts, 1981. A taxonomic study of diatoms from standing freshwaters in Shetland. Nova Hedwigia 31: 605–629.Google Scholar
  27. Charles, D. F., 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66: 994–1011.Google Scholar
  28. Charles, D. F., S. S. Dixit, B. F. Cumming & J. P. Smol, 1991. Variability in diatom and chrysophyte assemblages and inferred pH: paleolimnological studies of Big Moose Lake, New York, USA. J. Paleolim. 5: 267–284.Google Scholar
  29. Cleve-Euler, A., 1951–1955. Die Diatomeen von Sweden und Finnland. Kungl. Svenska Vetensk. Handl. Ser. 4, 2(1), 3–163; 3(3) 3–153; 4(1) 3–158; 4(5) 3–255; 5(4) 3–231.Google Scholar
  30. Davis, R. B., 1987. Paleolimnological diatom studies of acidification of lakes by acid rain: an application of Quaternary science. Quat. Sci. Rev. 6: 147–163.Google Scholar
  31. DeNicola, D. M., 1986. The representation of living diatom communities in deep-water sedimentary diatom assemblages in two Maine (USA) lakes. In J. P. Smol, R. W. Battarbee, R. B. Davis & J. Meriläinen (eds.), Diatoms and lake acidity. Junk, Dordrecht: 73–85.Google Scholar
  32. Donovan, S. K., 1991. The processes of fossilization. Belhaven Press, London, 303 pp.Google Scholar
  33. Eaton, J. W. & B. Moss, 1966. The estimation of numbers and pigment content in epipelic algal populations. Limnol. Oceanogr. 11: 584–595.Google Scholar
  34. Edmunds, W. M., N. S. Robins & J. M. Cook, 1986. Groundwater contribution to the Loch Fleet catchment. In G. Howells (ed.) The Loch Fleet project: a report of the pre-intervention phase 1984–1986, Annex A.7. Central Electricity Generating Board, Leatherhead.Google Scholar
  35. Efremov, J. A., 1940. Taphonomy: new branch of paleontology. Pan American Geologist 74: 81–93.Google Scholar
  36. Faegri, K., 1966. Some problems of representativity in pollen analysis. Palaeobotanist 15: 135–140.Google Scholar
  37. Flower, R. J., 1985. An improved epilithon sampler and its evaluation in two acid lakes. Br. Phycol. J. 20: 109–115.Google Scholar
  38. Flower, R. J., 1986a. The relationship between surface sediment diatom assemblages and pH in 33 Galloway lakes: some regression models for reconstructing pH and their application to sediment cores. In H. Löffler & J. Bobeck (eds.), Proceedings of the fourth international symposium on palaeolimnology. Junk, Dordrecht: 93–103.Google Scholar
  39. Flower, R. J., 1986b. An evaluation of some early diatom material and chemical data from Lough Neagh, Northern Ireland. Diat. Res. 1: 19–26.Google Scholar
  40. Flower, R. J., 1993. Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269/270: 473–484.Google Scholar
  41. Flower, R. J. & R. W. Battarbee, 1985. The morphology ofTabellaria quadriseptata (Bacillariophyceae) in acid waters and lake sediments in Galloway, Southwest Scotland. Br. Phycol. J. 20: 69–79.Google Scholar
  42. Flower, R. J., R. W. Battarbee & P. G. Appleby, 1987. The recent palaeolimnology of acid lakes in Galloway, south-west Scotland: diatom analysis, pH trends and the role of afforestation. J. Ecol. 75: 797–824.Google Scholar
  43. Flower, R. J. & A. Nicholson, 1987. Relationships between bathymetry, water quality and diatoms in some Hebridean freshwater lochs. Freshwat. Biol. 18: 71–85.Google Scholar
  44. Foged, N., 1974. Freshwater diatoms in Iceland. Biblio. Phycol. 15: 1–118.Google Scholar
  45. Foged, N., 1977. Freshwater diatoms in Ireland. Biblio. Phycol. 34: 1–222.Google Scholar
  46. Foged, N., 1980. Diatoms in Öland, Sweden. Biblio. Phycol. 49: 1–192.Google Scholar
  47. Foged, N., 1982. Diatoms in Bornholm, Denmark. Biblio. Phycol. 59: 1–174.Google Scholar
  48. Fritz, S. C., 1990. Twentieth-century salinity and water-level fluctuations in Devils Lake, North Dakota: Test of a diatom-based transfer function. Limnol. Oceanogr. 35: 1771–1781.Google Scholar
  49. Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  50. Gardiner, C. I. & S. H. Reynolds, 1932. The Loch Doon ‘Granite’ area, Galloway. Quat. J. Geol. Soc. Lond. 88: 1–34.Google Scholar
  51. Gasse, F., 1974. Les Diatomées des Sediments Holocènes du Bassin du Lac Afrera (Guilietti) (Afar Septentrional, Ethiopie), Essai de Reconstitution de l'Evolution du Milieu. Int. Revue ges. Hydrobiol. 59: 95–122.Google Scholar
  52. Germain, H., 1981. Flora des diatomées eaux douce et saumatres. Société Nouvelle des éditions Boubée, Paris, 444 pp.Google Scholar
  53. Gifford, D. P., 1981. Taphonomy and paleoecology: a critical review of archaeology's sister disciplines. In M. B. Schiffer (ed.), Advances in archaeological method and theory, vol. 4, Academic Press: New York: 365–438.Google Scholar
  54. Greig, D. C., 1971. British regional geology: the south of Scotland. H.M.S.O., Edinburgh, 125 pp.Google Scholar
  55. Haberyan, K. A., 1990. The misinterpretation of the planktonic diatom assemblage in traps and sediments: southern Lake Malawi, Africa. J. Paleolimnol. 3: 35–44.Google Scholar
  56. Hall, R. I. & J. P. Smol, 1992. A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwat. Biol. 27: 417–434.Google Scholar
  57. Hartley, B., 1986. A check-list of the freshwater, brackish and marine diatoms of the British Isles and adjoining coastal waters. J. mar. biol. Assoc. U.K. 66: 531–610.Google Scholar
  58. Haworth, E. Y., 1969. The diatoms of a sediment core from Blea Tarn, Langdale. J. Ecol. 57: 429–441.Google Scholar
  59. Haworth, E. Y., 1979. The distribution of a species ofStephanodiscus in the recent sediments of Blelham Tarn, English Lake District. Nova Hedwigia Beiheft 64: 395–410.Google Scholar
  60. Haworth, E. Y., 1980. Comparison of continuous phytoplankton records with the diatom stratigraphy in the recent sediments of Blelham Tarn, English Lake District. Limnol. Oceanogr. 25: 1093–1103.Google Scholar
  61. Hill, M. O., 1979. TWINSPAN: a FORTRAN programme for arranging multivariate data in an ordered two-way table by the classification of the individuals attributes. Ecology and Systematics Series. Cornell University, Ithaca.Google Scholar
  62. Howells, G., 1986. The Loch Fleet Project: a report of the preintervention phase (1) 1984–1986. Central Electricity Generating Board, Leatherhead, 74 pp.Google Scholar
  63. Howells, 1989. The Loch Fleet Project: a report of the invention phase (2) 1986–1989. Central Electricity Generating Board, Leatherhead, 102 pp.Google Scholar
  64. Howells, G. & D. J. A. Brown, 1987. The Loch Fleet Project, S.W. Scotland. Trans r. Soc. Edinb. Earth Sci. 78: 241–248.Google Scholar
  65. Hudson, C., J. S. Robertson, C. G. B. Campbell, D. J. Henderson, K. W. M. Brown, L. Robertson & B. F. L. Smith, 1986. Soils and vegetation of the Loch Fleet catchment. In G. Howells (ed.), The Loch Fleet project: a report of the pre-intervention phase 1984–1986, Annex A.1. Central Electricity Generating Board, Leatherhead.Google Scholar
  66. Hustedt, F., 1927–1966. Die kieselalgen Deutschlands, Osterreichs und der Schweiz unter berucksichtgung der ubrigen lander Europas sowie der angrenzenden meeresgebiete. In L. Rabenhorst's kryptogamen-flora Deutschland, Osterreich und der Schweiz, Volume 1 (1927–30), 2 (1931–59), 3 (1961–1966). Akademische Verlagsgesellschaft, Leipzig.Google Scholar
  67. Hustedt, F., 1930. Bacillariophyta (Diatomeae). In A. Pascher (ed.), Die süsswasser flora Mitteleuropas, Gustav Fisher, Jena.Google Scholar
  68. Jones, V. J. & R. J. Flower, 1986. Spatial and temporal variability in periphytic diatom communities: palaeoecological significance in an acidified lake. In J. P. Smol, R. W. Battarbee, R. B. Davis & J. Meriläinen, Diatoms and lake acidity. Junk, Dordrecht: 73–85.Google Scholar
  69. Kajak, Z., 1966. Field experiment in studies on benthos density of some Mazurian lakes. Geswäss, Abwäss. 41/42: 150–158.Google Scholar
  70. Kidwell, S. M. & A. K. Behrensmeyer, 1988. Overview: ecological and evolutionary implications of taphonomic processes. Palaeogeogr. Palaeoclimat. Palaeoecol. 63: 1–13.Google Scholar
  71. Koch, C. P., 1989. Taphonomy: a bibliographic guide to the literature. University of Maine, 67 pp.Google Scholar
  72. Kosugi, M., 1989. Processes of formation on fossil diatom assemblages and the paleoecological analysis. Benthos Research 35/36: 17–28.Google Scholar
  73. Krammer, K. & H. Lange-Bertalot, 1986. Süsswasserflora von Mitteleuropa: Bacillariophyceae. 1. Teil: Naviculaceae. Gustav Fisher Verlag, Stuttgart, 876 pp.Google Scholar
  74. Krammer, K. & H. Lange-Bertalot, 1988. Süsswasserflora von Mitteleuropa: Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fisher Verlag, Stuttgart, 596 pp.Google Scholar
  75. Kreiser, A. & R. W. Battarbee, 1987. Analytical quality control (AQC) in diatom analysis. Proceedings of Nordic Diatomist Meeting, University of Stockholm, Department of Quaternary Research, Report No. 12: 41–44.Google Scholar
  76. Lawrence, D. R., 1968. Taphonomy and information losses in fossil communities. Geol. Soc. Amer. Bull. 79: 1315–1330.Google Scholar
  77. Livingstone, D. & R. S. Cambray, 1978. Confirmation of137Cs dating by algal stratigraphy in Rostherne Mere. Nature 276: 259–261.Google Scholar
  78. Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.Google Scholar
  79. MacKay, A. & R. J. Flower, 1993. Recent environmental change in Lake Baikal, Eastern Siberia: with special reference to the sedimentary diatom record. Environmental Change Research Centre Research Report No. 1, University College London, 49 pp.Google Scholar
  80. Miller, A. I., 1988. Spatial resolution in subfossil molluscan remains: implications for palaeobiological analyses. Paleobiology 14: 91–103.Google Scholar
  81. Morris, R. & J. P. Reader, 1990. The effects of controlled chemical episodes on the survival, sodium balance and respiration of brown trout,Salmo trutta L. In B. J. Mason (ed.), The surface waters acidification programme. Cambridge University Press: 357–368.Google Scholar
  82. Munro, M. A. R., A. M. Kreiser, R. W. Battarbee, S. Juggins, A. C. Stevenson, D. S. Anderson, N. J. Anderson, F. Berge, H. J. B. Birks, R. B. Davis, R. J. Flower, S. C. Fritz, E. Y. Haworth, V. J. Jones, JC. Kingston & I. Renberg, 1990. Diatom quality control and data handling. Phil. Trans. r. Soc. Lond. B 327: 257–261.Google Scholar
  83. Murray, J. W., 1982. Benthic foraminifera: the validity of living, dead or total assemblages for the interpretation of palaeoecology. J. Micropalaeontol. 1: 137–140.Google Scholar
  84. Olsen, E. C., 1980. Taphonomy: its history and role in community evolution. In A. K. Behrensmeyer & A. P. Hill (eds.), Fossils in the making: vertebrate taphonomy and paleoecology. University of Chicago Press, Chicago: 5–19.Google Scholar
  85. Patrick, R & C. Reimer, 1966. The diatoms of the United States, exclusive of Alaska and Hawaii. I: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Acad. Nat. Sci. Philadelphia Monograph 13, 688 pp.Google Scholar
  86. Patrick, R & C. Reimer, 1975. The diatoms of the United States, exclusive of Alaska and Hawaii. II: Part I. Acad. Nat. Sci. Philadelphia Monograph 13, 613 pp.Google Scholar
  87. Renberg, I., 1976. Palaeolimnological investigations in Lake Prästsjön. Early Norrland 9: 113–160.Google Scholar
  88. Round, F. E., 1957. The late-glacial and post-glacial diatom succession in the Kentmere Valley deposit. I. Introduction, methods and flora. New Phytol. 56: 98–126.Google Scholar
  89. Round, F. E., 1961. Diatoms from Esthwaite. New Phytol. 60: 43–59.Google Scholar
  90. Round, F. E., 1964. The diatom sequence in lake deposits: some problems of interpretation. Verh. int. Ver. Limnol. 15: 1012–1020.Google Scholar
  91. Round, F. E., 1965. The epipsammon: a relatively unknown algal association. Br. Phycol. Bull. 2: 456–462.Google Scholar
  92. Ryves, D. B., 1994. Diatom dissolution in saline lake sediments: an experimental study from the Great Plains of North America. Ph.D. thesis, University of London, 290 pp.Google Scholar
  93. Sancetta, C., 1989. Processes controlling the accumulation of diatoms in sediments: a model derived from British Columbian Fjords. Paleoceanography 4: 235–251.Google Scholar
  94. Sancetta, C. & S. E. Calvert, 1988. The annual cycle of sedimentation in Saanich Inlet, British Columbia: implications for the interpretation of diatom fossil assemblages. Deep-Sea Research 35: 71–90.Google Scholar
  95. Sherrod, B. L., H. B. Rollins & S. K. Kennedy, 1989. Subrecent intertidal diatoms from St. Catherines Island, Georgia: taphonomic implications. J. Coastal Res. 5: 665–677.Google Scholar
  96. Shipman, P. L., 1981. Life history of a fossil. Harvard University Press, Cambridge, Mass., 222 pp.Google Scholar
  97. Simola, H., 1977. Diatom succession in the formation of annually laminated sediment in Lovojärvi, a small eutrophicated lake. Ann. Bot. Fennici 14: 143–148.Google Scholar
  98. Simola, H., 1979. Micro-stratigraphy of sediment laminations deposited in a chemically stratifying eutrophic lake during the years 1913–1976. Holarct. Ecol. 2: 160–168.Google Scholar
  99. Smith, M. A., 1990. The ecophysiology of epilithic diatom communities of acid lakes in Galloway, southwest Scotland. Phil. Trans. r. Soc. Lond. B 327: 251–256.Google Scholar
  100. Smith, R. K., 1987. Fossilization potential in modern shallow-water benthic foraminiferal assemblages. J. Foram. Res. 17: 117–122.Google Scholar
  101. Staff, G. M., R. J. Stanton, E. N. Powell & H. Cummins, 1986. Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: death assemblages in Texas bays. Geol. Soc. Am. Bull. 97: 428–443.Google Scholar
  102. Stanton, R. J., 1976. The relationship of fossil communities to the original communities of living organisms. In R. W. Scott & R. R. West (eds.), Structure and classification of palaeocommunities. Dowden, Hutchinson & Ross, Stroudsberg, Pennsylvania: 107–142.Google Scholar
  103. Stevenson, A. C., H. J. B. Birks, R. J. Flower & R. W. Battarbee 1989. Diatom-based pH reconstruction of lake acidification using canonical correspondence analysis. Ambio 18: 228–233.Google Scholar
  104. Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro, I. Renberg, 1991, The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lake-Water Chemistry Data-Set. Ensis Publishing, London, 86 pp.Google Scholar
  105. Sweets, R. P., 1983. Differential deposition of diatom frustules in Jellison Hill Pond, Maine. M.Sc. thesis, University of Maine, 270 pp.Google Scholar
  106. Ter Braak, C. J. F., 1987, CANOCO - a FORTRAN program for canonical community ordination by [partial] [detrended] [canonical] correspondance analysis, principle components analysis and redundancy analysis (version 2.1). TNO Institute of Applied Computer Science, Wageningen.Google Scholar
  107. Warme, J. E., 1969. Live and dead molluscs in a coastal lagoon. J. Paleontol. 43: 141–150.Google Scholar
  108. Wetzel, R. G. & G. E. Likens, 1979. Limnological analyses. W. B. Saunders, Philadelphia, 357 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • N. G. Cameron
    • 1
  1. 1.Environmental Change Research CentreUniversity College LondonLondonUK

Personalised recommendations