Cellular and Molecular Neurobiology

, Volume 11, Issue 5, pp 497–509

Cellular distribution ofl-glutamate decarboxylase (GAD) andγ-aminobutyric acidA (GABAA) receptor mRNAs in the retina

  • Nicholas C. Brecha
  • Catia Sternini
  • Martin F. Humphrey


  1. 1.

    γ-Aminobutyric acid (GABA), a major inhibitory transmitter of the vertebrate retina, is synthesized from glutamate byl-glutamate decarboxylase (GAD) and mediates neuronal inhibition at GABAA receptors. GAD consists of two distinct molecular forms, GAD65 and GAD67, which have similar distribution patterns in the nervous system (Feldblumet al., 1990; Erlander and Tobin, 1991). GABAA receptors are composed of several distinct polypeptide subunits, of which the GABAAα1 variant has a particularly extensive and widespread distribution in the nervous system. The aim of this study was to determine the cellular localization patterns of GAD and GABAAα1 receptor mRNAs to define GABA- and GABAA receptor-synthesizing neurons in the rat retina.

  2. 2.

    GAD and GABAAα1 mRNAs were localized in retinal neurons byin situ hybridization histochemistry with35S-labeled antisense RNA probes complementary to GAD67 and GABAAα1 mRNAs.

  3. 3.

    The majority of neurons expressing GAD67 mRNA is located in the proximal inner nuclear layer (INL) and ganglion cell layer (GCL). Occasional GAD67 mRNA-containing neurons are present in the inner plexiform layer. Labeled neurons are not found in the distal INL or in the outer nuclear layer (ONL).

  4. 4.

    GABAAα1 mRNA is expressed by neurons distributed to all regions of the INL. Some discretely labeled cells are present in the GCL. Labeled cells are not observed in the ONL.

  5. 5.

    The distribution of GAD67 mRNA demonstrates that numerous amacrine cells (conventional, interstitial, and displaced) and perhaps interplexiform cells synthesize GABA. These cells are likely to employ GABA as a neurotransmitter.

  6. 6.

    The distribution of GABAAα1 mRNA indicates that bipolar, amacrine, and perhaps ganglion cells express GABAA receptors having anα1 polypeptide subunit, suggesting that GABA acts directly upon these cells.


Key words

in situ hybridization histochemistry γ-aminobutyric acid l-glutamate decarboxylase bipolar cells amacrine cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agardh, E., Bruun, A., Ehinger, B., Ekstrom, P., van Veen, T., and Wu, J.-Y. (1987a). Gamma-aminobutyric acid- and glutamic acid decarboxylase-immunoreactive neurons in the retina of different vertebrates.J. Comp. Neurol. 258622–630.Google Scholar
  2. Agardh, E., Ehinger, B., and Wu, J.-Y. (1987b). GABA- and GAD-like immunoreactivity in the primate retina.Histochemistry 86485–490.Google Scholar
  3. Bolz, J., Frumkes, T., Voigt, T., and Wässle, H. (1985). Action and localization ofγ-aminobutyric acid in the cat retina.J. Physiol. (Lond.)362369–393.Google Scholar
  4. Bormann, J. (1988). Electrophysiology of GABAA and GABAB receptor subtypes.Trends Neurosci. 11112–116.Google Scholar
  5. Bowery, N. G., Price, G. W., Hudson, A. L., Hill, D. R., Wilkin, G. P., and Turnbull, M. J. (1984). GABA receptor multiplicity. Visualization of different receptor types in the mammalian CNS.Neuropharmacology 23219–231.Google Scholar
  6. Brandon, C. (1985). Retinal GABA neurons: Localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase.Brain Res. 344286–295.Google Scholar
  7. Brandon, C., Lam, D. M. K., and Wu, J.-Y. (1979). Theγ-aminobutyric acid system in rabbit retina: Localization by immunocytochemistry and autoradiography.Proc. Natl. Acad. Sci. USA 763557–3561.Google Scholar
  8. Brecha, N. (1983). Retinal neurotransmitters: Histochemical and biochemical studies. InChemical Neuroanatomy (P. C. Emson, Ed.), Raven Press, New York, pp. 85–129.Google Scholar
  9. Brecha, N., Lai, M., and Sternini, C. (1990). Differential expression of GABAA α1 andα2 receptor mRNAs in the rat retina.Invest. Ophthal. Vis. Sci. Suppl. 31330.Google Scholar
  10. Brecha, N., Johnson, D., Peichl, L., and Wässle, H. (1988). Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase andγ-aminobutyrate immunoreactivity.Proc. Natl. Acad. Sci. USA 856187–6191.Google Scholar
  11. Brecha, N., Sternini, C., Anderson, K., and Krause, J. E. (1989). Expression and cellular localization of substance P/neurokinin A and neurokinin B mRNAs in the rat retina.Vis. Neurosci. 3527–535.Google Scholar
  12. Caruso, D. M., Owczarzak, M. T., Goebel, D. J., Hazlett, J. C., and Pourcho, R. G. (1989). GABA-immunoreactivity in ganglion cells of the rat retina.Brain Res. 476129–134.Google Scholar
  13. Chun, M. H., and Wässle, H. (1989). GABA-like immunoreactivity in the cat retina: Electron microscopy.J. Comp. Neural. 27955–67.Google Scholar
  14. Cox, K. H., DeLeon, D. V., Angerer, L. M., and Angerer, R. C. (1984). Detection of mRNAs in sea urchin embryos byin situ hybridization using asymmetric RNA probes.Dev. Biol. 101485–502.Google Scholar
  15. Erlander, M. G., and Tobin, A. J. (1991). The structural and functional heterogeneity of glutamic acid decarboxylase: A review.Neurochem. Res. 15215–226.Google Scholar
  16. Erlander, M. G., Tillakaratne, N. J. K., Felblum, S., Patel, N., and Tobin, A. J. (1990). Two genes encode distinct glutamate decarboxylases with different responses to pyridoxal phosphate.Soc. Neurosci. Abstr. 16960.Google Scholar
  17. Feldblum, S., Tillakaratne, N. J. K., Erlander, M. G., and Tobin, A. J. (1990). Differential distribution of the mRNAs encoding two forms of glutamic acid decarboxylases in the rat brain: Insights on their functions.Soc. Neurosci. Abstr. 16695.Google Scholar
  18. Grünert, U., and Wässle, H. (1990). GABA-like immunoreactivity in the macaque monkey retina: A light and electron microscopic study.J. Comp. Neurol. 297509–524.Google Scholar
  19. Hendrickson, A., Ryan, M., Noble, B., and Wu, J.-Y. (1985). Colocalization of [3H]muscimol and antisera to GABA and glutamic acid decarboxylase within the same neurons in monkey retina.Brain Res. 348391–396.Google Scholar
  20. Hughes, T. E., Carey, R. G., Vitorica, J., DeBlas, A. L., and Karten, H. J. (1989). Immunohistochemical localization of GABAA receptors in the retina of the new world primateSaimiri sciureus.Vis. Neurosci. 2565–581.Google Scholar
  21. Karschin, A., and Wässle, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina.J. Neurophysiol. 63860–876.Google Scholar
  22. Khrestchatisky, M., MacLennan, A. J., Chiang, M.-Y., Xu, W., Jackson, M. B., Brecha, N., Sternini, C., Olsen, R. W., and Tobin, A. J. (1989). A novelα-subunit in rat brain GABAA receptors.Neuron 3745–753.Google Scholar
  23. Khrestchatisky, M., MacLennan, A. J., Tillakaratne, N. J. K., Chiang, M.-Y., and Tobin, A. J. (1991). Sequence and regional distribution of the mRNA encoding theα2 polypeptide of rat GABAA receptors.Neurochem. 561717–1722.Google Scholar
  24. Kosaka, T., Tauchi, M., and Dahl, J. L. (1988). Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat.Exp. Brain Res. 70605–617.Google Scholar
  25. Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Köhler, M., Fujita, N., Rodriguez, H. F., Stephenson, A., Darlison, M. G., Barnard, E. A., and Seeburg, P. H. (1988). Structural and functional basis for GABAA receptor heterogeneity.Nature 33576–79.Google Scholar
  26. Lin, C.-T., Li, H.-Z., and Wu, J.-Y. (1983). Immunocytochemical localization ofl-glutamate decarboxylase, gamma-aminobutyric acid transaminase, cysteine sulfinic acid decarboxylase, aspartate aminotransferase and somatostatin in rat retina.Brain Res. 270273–283.Google Scholar
  27. MacLennan, A. J., Brecha, N., Khrestchatisky, M., Sternini, C., Tillakaratne, N. J. K., Chiang, M.-Y., Anderson, K., Bhakta, K., Lai, M., and Tobin, A. J. (1991). Independent cellular and ontogenetic expression of mRNAs encoding threeα polypeptides of the rat GABAA receptor.J. Neurosci. 43 369–380.Google Scholar
  28. Malherbe, P., Sigel, E., Baur, R., Persohn, E., Richards, J. G., and Möhler, H. (1990). Functional characteristics and sites of gene expression of theα1,β1,γ1-isoforms of the rat GABAA receptor.J. Neurosci. 102330–2337.Google Scholar
  29. Mariani, A. P., and Caserta, M. T. (1986). Electron microscopy of glutamate decarboxylase (GAD) immunoreactivity in the inner plexiform layer of the rhesus monkey retina.J. Neurocytol. 15645–655.Google Scholar
  30. Mariani, A. P., Cosenza-Murphy, D., and Barker, J. L. (1987). GABAergic synapses and benzodiazepine receptors are not identically distributed in the primate retina.Brain Res. 415 153–157.Google Scholar
  31. Möhler, H., Malherbe, P., Draguhn, A., and Richards, J. G. (1990). GABAA-receptors: Structural requirements and sites of gene expression in mammalian brain.Neurochem. Res. 15199–207.Google Scholar
  32. Mosinger, J. L., and Yazulla, S. (1985). Colocalization of GAD-like immunoreactivity and3H-GABA uptake in amacrine cells of rabbit retina.J. Comp. Neurol. 240396–406.Google Scholar
  33. Mosinger, J. L., and Yazulla, S. (1987). Double-label analysis of GAD- and GABA-like immunoreactivity in the rabbit retina.Vision Res. 2723–30.Google Scholar
  34. Mosinger, J. L., Yazulla, S., and Studholme K. (1986). GABA-like immunoreactivity in the vertebrate retina: a species comparison.Exp. Eye Res. 42631–644.Google Scholar
  35. Nishimura, Y., Schwartz, M. L., and Rakic, P. (1985). Localization ofγ-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina.Brain Res. 359351–355.Google Scholar
  36. Olsen, R. W., and Venter, J. C. (1986).Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties. Receptor Biochemistry and Methodology, Vol. 5, Alan R. Liss, New York.Google Scholar
  37. Olsen, R. W., and Tobin, A. J. (1990). Molecular biology of GABAA receptors.FASEB J. 41469–1480.Google Scholar
  38. Olsen, R. W., McCabe, R. T., and Wamsley, J. K. (1990). GABAA receptor subtypes: Autoradiographic comparison of GABA, benzodiazepine, and convulsant binding sites in the rat central nervous system.J. Chem. Neuroanat. 359–76.Google Scholar
  39. Osborne, N. N., Patel, S., Beaton, D. W., and Neuhoff, V. (1986). GABA neurones in retinas of different species and their postnatal developmentin situ and in culture in the rabbit retina.Cell Tissue Res. 243117–123.Google Scholar
  40. Perry, V. H. (1981). Evidence for an amacrine cell system in the ganglion cell layer of the rat retina.Neuroscience 6931–944.Google Scholar
  41. Pourcho, R. G. (1981). Autoradiographic localization of [3H]muscimol in the cat retina.Brain Res. 215187–199.Google Scholar
  42. Pourcho, R. G., and Owczarzak, M. T. (1989). Distribution of GABA immunoreactivity in the cat retina: A light and electron-microscopic study.Vis. Neurosci. 2425–435.Google Scholar
  43. Pritchett, D. B., Sontheimer, H., Shivers, B. D., Ymer, S., Kettenmann, H., Schofield, P. R., and Seeburg, P. H. (1989a). Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology.Nature 338582–585.Google Scholar
  44. Pritchett, D. B., Lüddens, H., and Seeburg, P. H. (1989b). Type I and type II GABAA-benzodiazepine receptors produced in transfected cells.Science 2451389–1392.Google Scholar
  45. Richards, J. G., Schoch, P., Häring, P., Takacs, B., and Möhler, H. (1987). Resolving GABAA/benzodiazepine receptors: Cellular and subcellular localization in the CNS with monoclonal antibodies.J. Neurosci. 71866–1886.Google Scholar
  46. Sarthy, P. V., and Fu, M. (1989a). Localization ofl-glutamic acid decarboxylase mRNA in cat retinal horizontal cells byin situ hybridization.J. Comp. Neurol. 288593–600.Google Scholar
  47. Sarthy, P. V., and Fu, M. (1989b). Localization ofl-glutamic acid decarboxylase mRNA in monkey and human retina byin situ hybridization.J. Comp. Neurol. 288691–697.Google Scholar
  48. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard, E. A. (1987). Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family.Nature 328221–227.Google Scholar
  49. Séquier, J. M., Richards, J. G., Malherbe, P., Price, G. W., Mathews, S., and Möhler, H. (1988). Mapping of brain areas containing RNA homologous to cDNAs encoding theα andβ subunits of the GABAA γ-aminobutyrate receptor.Proc. Natl. Acad. Sci. USA 857815–7819.Google Scholar
  50. Shivers, B. D., Killisch, I., Sprengel, R., Sontheimer, H., Köhler, M., Schofield, P. R., and Seeburg, P. H. (1989). Two novel GABAA receptor subunits exist in distinct neuronal subpopulations.Neuron 3327–337.Google Scholar
  51. Skolnick, P., Paul, S., Zatz, M., and Eskay, R. (1980). “Brain-specific” benzodiazepine receptors are localized in the inner plexiform layer of rat retina.Eur. J. Pharmacol. 66133–136.Google Scholar
  52. Sternini, C., Anderson, K., Frantz, G., Krause, J. E., and Brecha, N. (1989). Expression of substance P/neurokinin A-encoding preprotachykinin messenger ribonucleic acids in the rat enteric nervous system.Gastroenterology 97348–356.Google Scholar
  53. Suzuki, S., Tachibana, M., and Kaneko, A. (1990). Effects of glycine and GABA on isolated bipolar cells of the mouse retina.J. Physiol. (Lond.)421645–662.Google Scholar
  54. Tauck, D. L., Frosch, M. P., and Lipton, S. A. (1988). Characterization of GABA- and glycine-induced currents of solitary rodent retinal ganglion cells in culture.Neuroscience 27193–203.Google Scholar
  55. Vaughn, J. E., Famiglietti, E. V., Jr., Barber, R. P., Saito, K., Roberts, E., and Ribak, C. E. (1981). GABAergic amacrine cells in rat retina: Immunocytochemical identification and synaptic connectivity.J. Comp. Neurol. 197113–127.Google Scholar
  56. Verdoorn, T. A., Draguhn, A., Ymer, S., Seeburg, P. H., and Sakman, B. (1990). Functional properties of recombinant rat GABAA receptors depend upon subunit composition.Neuron 4919–928.Google Scholar
  57. Versaux-Botteri, C., Pochet, R., and Nguyen-Legros, J. (1989). Immunohistochemical localization of GABA-containing neurons during postnatal development of the rat retina.Invest. Ophthal. Vis. Sci. 30652–659.Google Scholar
  58. Wässle, H., and Chun, M. H. (1988). Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina.J. Neurosci. 8 3383–3394.Google Scholar
  59. Wässle, H., and Chun, M. H. (1989). GABA-like immunoreactivity in the cat retina: Light microscopy.J. Comp. Neurol. 27943–54.Google Scholar
  60. Wässle, H., Chun, M. H., and Müller, F. (1987). Amacrine cells in the ganglion cell layer of the cat retina.J. Comp. Neurol. 265391–408.Google Scholar
  61. Wässle, H., Grünert, U., Röhrenbeck, J., and Boycott, B. B. (1989). Cortical magnification factor and the ganglion cell density of the primate retina.Nature 341643–646.Google Scholar
  62. Wisden, W., Morris, B. J., Darlison, M. G., Hunt, S. P., and Barnard, E. A. (1988). Distinct GABAA receptorα subunit mRNAs show differential patterns of expression in bovine brain.Neuron 1937–947.Google Scholar
  63. Wisden, W., Morris, B. J., Darlison, M. G., Hunt, S. P., and Barnard, E. A. (1989). Localization of GABAA receptorα subunit mRNAs in relation to receptor subtypes.Mol. Brain Res. 5305–310.Google Scholar
  64. Yazulla, S. (1986). GABAergic mechanisms in the retina. InProgress in Retinal Research, Vol. 5 (N. N. Osborne and G. J. Chader, Eds.), Pergamon Press, Oxford, pp. 1–52.Google Scholar
  65. Yeh, H. H., Lee, M. B., and Cheun, J. E. (1990). Properties of GABA-activated whole-cell currents in bipolar cells of the rat retina.Vis. Neurosci. 4349–357.Google Scholar
  66. Ymer, S., Schofield, P. R., Draguhn, A., Werner, P., Köhler, M., and Seeburg, P. H. (1989a). GABAA receptorβ subunit heterogeneity: functional expression of cloned cDNAs.EMBO J. 81665–1670.Google Scholar
  67. Ymer, S., Draguhn, A., Köhler, M., Schofield, P. R., and Seeburg, P. H. (1989b). Sequence and expression of a novel GABAA receptorα subunit.FEBS Lett. 258119–122.Google Scholar
  68. Young, W. S., III, and Kuhar, M. J. (1979). Autoradiographic localisation of benzodiapepine receptors in the brains of humans and animals.Nature 280393–395.Google Scholar
  69. Zarbin, M. A., Wamsley, J. K., Palacios, J. M., and Kuhar, M. J. (1986). Autoradiographic localization of high affinity GABA, benzodiazepine, dopaminergic, adrenergic and muscarinic cholinergic receptors in the rat, monkey, and human retina.Brain Res. 37475–92.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • Nicholas C. Brecha
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Catia Sternini
    • 1
    • 3
    • 4
    • 6
  • Martin F. Humphrey
    • 7
    • 8
  1. 1.Department of MedicineUCLALos AngelesUSA
  2. 2.Department of Anatomy and Cell BiologyUCLA School of Medicine, UCLALos AngelesUSA
  3. 3.CUREUCLA School of Medicine, UCLALos AngelesUSA
  4. 4.Brain Research InstituteUCLA School of Medicine, UCLALos AngelesUSA
  5. 5.Jules Stein Eye InstituteUCLA School of Medicine, UCLALos AngelesUSA
  6. 6.Veterans Administration Medical Center-West Los AngelesLos AngelesUSA
  7. 7.Department of PsychologyQueen Elizabeth II Medical CentreNedlandsAustralia
  8. 8.Queen Elizabeth II Medical CentreUniversity of Western Australia and Lions Eye InstituteNedlandsAustralia
  9. 9.VAMC West Los AngelesLos AngelesUSA

Personalised recommendations