Advertisement

Cellular and Molecular Neurobiology

, Volume 4, Issue 4, pp 403–408 | Cite as

Postsynaptic actions of baclofen associated with its antagonism of bicuculline-induced epileptogenesis in hippocampus

  • Robert J. Brady
  • John W. Swann
Short Communication

Summary

  1. 1.

    The effect of baclofen on bicuculline-induced epileptogenesis was investigated in the CA3 region of hippocampal slices taken from rats 9 days to 8 weeks of age.

     
  2. 2.

    Bath application of baclofen blocked all spontaneous epileptiform activity and raised the stimulus strength required for orthodromic induction of epileptiform discharges.

     
  3. 3.

    Baclofen was equally effective in antagonizing depolarization shift generation in mature and immature rat slices.

     
  4. 4.

    The duration of afterdischarges recorded in immature hippocampus was unaltered, yet these events were eliminated when the proceeding depolarization shift was blocked.

     
  5. 5.

    Baclofen hyperpolarized all CA3 pyramidal cells studied with an associated decrease in membrane resistance. These effects were produced by a direct postsynaptic action.

     

Key words

baclofen hippocampus epilepsy pyramidal cell postsynaptic effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alger, B. E. (1984). Hippocampus: Electrophysiological studies of epileptiform activityin vitro. InBrain Slices (Dingledine, R., Ed.), Plenum Press, New York, pp. 155–200.Google Scholar
  2. 2.
    Ault, B., and Nadler, J. V. (1982). Baclofen selectively inhibits transmission at synapses made by axons of CA3 pyramidal cells in the hippocampal slice.J. Pharmacol. Exp. Ther. 223291–297.Google Scholar
  3. 3.
    Ault, B., and Nadler, J. V. (1983a). Anticonvulsant-like actions of baclofen in the rat hippocampal slice.Br. J. Pharmacol. 78701–708.Google Scholar
  4. 4.
    Ault, B., and Nadler, J. V. (1983b). Effects of baclofen on synaptically-induced cell firing in the rat hippocampal slice.Br. J. Pharmacol. 80211–219.Google Scholar
  5. 5.
    Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A. Liddlemiss, D. N., Shaw, J., and Turnball, M. (1980). (−)-Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor.Nature 28392–94.Google Scholar
  6. 6.
    Brady, R. J., and Swann, J. W. (1983). Intracellular studies of the effects of baclofen on bicucullineinduced epileptiform activity in CA3 pyramidal cells.Neurosci. Abstr. 9397.Google Scholar
  7. 7.
    Davies, J. (1981). Selective depression excitation in cat spinal neurons by baclofen: An iontophoretic study.Br. J. Pharmacol. 72373–384.Google Scholar
  8. 8.
    Dichter, M. A., and Spencer, W. A. (1969). Penicillin-induced interictal discharges from the cat hippocampus. I. Characteristics and topographical features.J. Neurophysiol. 32649–662.Google Scholar
  9. 9.
    Dichter, M. A., and Spencer, W. A. (1969). Penicillin-induced interictal discharges from the rat hippocampus. II. Mechanisms underlying origin and restriction.J. Neurophysiol. 32663–687.Google Scholar
  10. 10.
    Johnston, D., and Brown, T. H. (1981). Giant synaptic potential hypothesis for epileptiform activity.Science 211294–297.Google Scholar
  11. 11.
    Lanthorn, T. H., and Cotman, C. W. (1981). Baclofen selectively inhibits excitatory synaptic transmission in the hippocampus.Brain Res. 225171–178.Google Scholar
  12. 12.
    Misgeld, U., Klee, M. R., and Zeise, M. L. (1982). Differences in burst characteristics and drug sensitivity between CA3 neurons and granular cells. InPhysiology and Pharmacology of Epileptogenic Phenomena (Klee, M. R., Lux, H. D., and Speckmann, E. J., Eds.), Raven Press, New York, pp. 131–139.Google Scholar
  13. 13.
    Newberry, N. R., and Nicoll, R. A. (1984). Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells.Nature 308450–452.Google Scholar
  14. 14.
    Olpe, H.- R., Baudry, M., Fagni, L., and Lynch, G. (1982). The blocking action of baclofen on excitatory transmission in the rat hippocampal slice.J. Neurosci. 2698–703.Google Scholar
  15. 15.
    Prince, D. A. (1983). Ionic mechanism in cortical and hippocampal epileptogenesis.Basic Mechanisms of Neuronal Hypecitability. Neurology and Neurobiology, Vol. 2 In (Jasper, H. H., and vanGelder, N. M., Eds.), Alan R. Liss, New York, pp. 217–246.Google Scholar
  16. 16.
    Schwartzkroin, P. A., and Wyler, A. R. (1980). Mechanisms underlying epileptiform burst discharge.Ann. Neurol. 795–107.Google Scholar
  17. 17.
    Swann, J. W., and Brady, R. J. (1984). Penicillin-induced epileptogenesis in immature rat CA3 hippocampal pyramidal cells.Dev. Brain Res. 12243–254.Google Scholar
  18. 18.
    Traub, R. D., and Wong, R. K. S. (1983). Synchronized burst discharge in disinhibited hippocampal slice. II. Model of cellular mechanism.J. Neurophysiol. 49459–471.Google Scholar
  19. 19.
    Wong, R. S., and Traub, R. D. (1983). Synchronized burst discharge in disinhibited hippocampal slice: I Initiation in the CA2-CA3 region.J. Neurophysiol. 49442–458.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Robert J. Brady
    • 1
  • John W. Swann
    • 1
  1. 1.Wadsworth Center for Laboratories and ResearchNew York State Department of HealthAlbanyUSA

Personalised recommendations