Advertisement

Solar Physics

, Volume 162, Issue 1–2, pp 441–481 | Cite as

CELIAS - Charge, Element and Isotope Analysis System for SOHO

  • D. Hovestadt
  • M. Hilchenbach
  • A. Bürgi
  • B. Klecker
  • P. Laeverenz
  • M. Scholer
  • H. Grünwaldt
  • W. I. Axford
  • S. Livi
  • E. Marsch
  • B. Wilken
  • H. P. Winterhoff
  • F. M. Ipavich
  • P. Bedini
  • M. A. Coplan
  • A. B. Galvin
  • G. Gloeckler
  • P. Bochsler
  • H. Balsiger
  • J. Fischer
  • J. Geiss
  • R. Kallenbach
  • P. Wurz
  • K. -U. Reiche
  • F. Gliem
  • D. L. Judge
  • H. S. Ogawa
  • K. C. Hsieh
  • E. Möbius
  • M. A. Lee
  • G. G. Managadze
  • M. I. Verigin
  • M. Neugebauer
Article

Abstract

The CELIAS experiment on SOHO is designed to measure the mass, ionic charge and energy of the low and high speed solar wind, of suprathermal ions, and of low energy flare particles. Through analysis of the elemental and isotopic abundances, the ionic charge state, and the velocity distributions of ions originating in the solar atmosphere, the investigation focuses on the plasma processes on various temporal and spatial scales in the solar chromosphere, transition zone, and corona. CELIAS includes 3 mass- and charge-discriminating sensors based on the time-of-flight technique: CTOF for the elemental, charge and velocity distribution of the solar wind, MTOF for the elemental and isotopic composition of the solar wind, and STOF for the mass, charge and energy distribution of suprathermal ions. The instrument will provide detailed in situ diagnostics of the solar wind and of accelerated particles, which will complement the optical and spectroscopic investigations of the solar atmosphere on SOHO. CELIAS also contains a Solar Extreme Ultraviolet Monitor, SEM, which continously measures the EUV flux in a wide band of 17 – 70 nm, and a narrow band around the 30.4 nm He II line.

Key words

SOHO Solar Wind Solar Energetic Particles Composition Measurements Time-of-Flight Spectrometer 

References

  1. Arnaud, M. and Rothenflug, R.: 1985,Astron. and Astroph. Suppl. Ser. 60, 425Google Scholar
  2. Breneman, H. H. and Stone, E. C.: 1985,Astrophys. J. 299, L57Google Scholar
  3. Gloeckler, G., Geiss, J., Roelof, E. C., Fisk, L. A., Ipavich, F. M., Ogilvie, K. W., Lanzerotti, L. J., von Steiger, R., and Wilken, B.: 1994,J. Geophys. Res. 99, 17637Google Scholar
  4. Gonin, M.: 1994,PhD Thesis, University of Bern, Bern, Switzerland,Google Scholar
  5. Grünwaldt, H., et al.: 1990, SOWICOMS: An Instrument for Energy, Mass, and Charge Determination in Solar Wind and Mars Environment, inManufacturing of Scientific Space Instrumentation, Academy of Science of the USSR, 7Google Scholar
  6. Hsieh, K. C., Shih, K. L., Jokipii, J. R., and Grzedzielski, S.: 1992,Ap. J. 393, 756Google Scholar
  7. Lee, M. A.: 1983,J. Geophys. Res. 88, 6109Google Scholar
  8. Luhn, A., Hovestadt, D., Klecker, B., Scholer, M., Gloeckler, G., Ipavich, F. M., Galvin, A. B., Fan, C. Y., and Fisk, L. A.: 1985,Proceedings ICRC 4, 241Google Scholar
  9. Moebius, E., Hovestadt, D., Klecker, B., Scholer, M., Gloeckler, G., Ipavich, F. M.: 1984,Nature 318, 426Google Scholar
  10. Moebius, E.: 1986,Adv. Space Res. 6, 199Google Scholar
  11. Oetliker, M.: 1993, CTOF, A Solar Wind Time of Flight Mass Spectrometer with High Charge Resolution: Numerical Simulations and Calibrations, PhD thesis, University of BernGoogle Scholar
  12. Von Steiger, R. and Marsch, E.: 1994,Space Sci. Rev., in pressGoogle Scholar
  13. Von Steiger, R. amd Geiss, J.: 1994 Composition of the solar wind, inCosmic Winds and the Heliosphere, ed(s).,Jokipii, J. R., Sonett, C. P. andGiampapa, M. S., University of Arizona Press, TucsonGoogle Scholar
  14. Widing, K. G. and Feldman, U.: 1993,Astrophys. J. 416, 392Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • D. Hovestadt
    • 1
  • M. Hilchenbach
    • 1
  • A. Bürgi
    • 1
  • B. Klecker
    • 1
  • P. Laeverenz
    • 1
  • M. Scholer
    • 1
  • H. Grünwaldt
    • 2
  • W. I. Axford
    • 2
  • S. Livi
    • 2
  • E. Marsch
    • 2
  • B. Wilken
    • 2
  • H. P. Winterhoff
    • 2
  • F. M. Ipavich
    • 3
  • P. Bedini
    • 3
  • M. A. Coplan
    • 3
  • A. B. Galvin
    • 3
  • G. Gloeckler
    • 3
  • P. Bochsler
    • 4
  • H. Balsiger
    • 4
  • J. Fischer
    • 4
  • J. Geiss
    • 4
  • R. Kallenbach
    • 4
  • P. Wurz
    • 4
  • K. -U. Reiche
    • 5
  • F. Gliem
    • 5
  • D. L. Judge
    • 6
  • H. S. Ogawa
    • 6
  • K. C. Hsieh
    • 7
  • E. Möbius
    • 8
  • M. A. Lee
    • 8
  • G. G. Managadze
    • 9
  • M. I. Verigin
    • 9
  • M. Neugebauer
    • 10
  1. 1.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany
  2. 2.Max-Planck-Institut für AeronomieKatlenburg-LindauGermany
  3. 3.Dept. of Physics and Astronomy and IPSTUniversity of MarylandCollege ParkUSA
  4. 4.Physikalisches Institut der UniversitätBernSwitzerland
  5. 5.Institut für DatenverarbeitungsanlagenTechnische UniversitätBraunschweigGermany
  6. 6.Space Science CenterUniversity of Southern CaliforniaLos AngelesUSA
  7. 7.Department of PhysicsUniversity of ArizonaTucson
  8. 8.EOS, University of New HampshireDurhamUSA
  9. 9.Institute for Space PhysicsMoscowRussia
  10. 10.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations