Foundations of Physics

, Volume 22, Issue 9, pp 1111–1172 | Cite as

A priori probability and localized observers

  • Matthew J. Donald


A physical and mathematical framework for the analysis of probabilities in quantum theory is proposed and developed. One purpose is to surmount the problem, crucial to any reconciliation between quantum theory and space-time physics, of requiring instantaneous “wave-packet collapse” across the entire universe. The physical starting point is the idea of an observer as an entity, localized in space-time, for whom any physical system can be described at any moment, by a set of (not necessarily pure) quantum states compatible with his observations of the system at that moment. The mathematical starting point is the theory of local algebras from axiomatic relativistic quantum field theory. A function defining thea priori probability of mistaking one local state for another is analysed. This function is shown to possess a broad range of appropriate properties and to be uniquely defined by a selection of them. Through a general model for observations, it is argued that the probabilities defined here are as compatible with experiment as the probabilities of conventional interpretations of quantum mechanics but are more likely to be compatible, not only with modern developments in mathematical physics, but also with a complete and consistent theory of measurement.


General Model Quantum Field Theory Quantum Mechanic Mathematical Physic Local State 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Donald, “Quantum theory and the brain,”Proc. R. Soc. London A 427, 43–93 (1990).Google Scholar
  2. 2.
    M. J. Donald, “On the relative entropy,”Commun. Math. Phys. 105, 13–34 (1986).Google Scholar
  3. 3.
    M. J. Donald, “Further results on the relative entropy,”Math. Proc. Cambridge Philos. Soc. 101, 363–373 (1987).Google Scholar
  4. 4.
    H. Everett, III, “The theory of the universal wave function,” in B. S. DeWitt and N. Graham,The Many-Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, 1973).Google Scholar
  5. 5.
    J. Glimm and A. Jaffe, “Field theory models,” inStatistical Mechanics and Quantum Field Theory, C. DeWitt and R. Stora, eds. (Gordon & Breach, New York, 1971), pp. 1–108. Reprinted in Ref. 8.Google Scholar
  6. 6.
    J. Glimm and A. Jaffe, “Boson quantum field models,” inMathematics of Contemporary Physics, R. F. Streater, ed. (Academic Press, New York, 1972), pp. 77–143. Reprinted in Ref. 8.Google Scholar
  7. 7.
    J. Glimm and A. Jaffe, “The resummation of one particle lines,”Commun. Math. Phys. 67, 267–293 (1979).Google Scholar
  8. 8.
    J. Glimm and A. Jaffe,Quantum Field Theory and Statistical Mechanics—Expositions (Birkhäuser, Boston, 1985).Google Scholar
  9. 9.
    R. F. Streater and A. S. Wightman,PCT, Spin and Statistics, and All That (Benjamin, New York, 1964).Google Scholar
  10. 10.
    O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics (Springer, Berlin), Vol. I, 1979; Vol. II, 1981.Google Scholar
  11. 11.
    E. Seiler,Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics (Springer, Berlin, 1982).Google Scholar
  12. 12.
    R. Haag and B. Schroer, “Postulates of quantum field theory,”J. Math. Phys. 3, 248–256 (1962).Google Scholar
  13. 13.
    R. Haag and D. Kastler, “An algebraic approach to quantum field theory,”J. Math. Phys. 5, 848–861 (1964).Google Scholar
  14. 14.
    W. Driessler, S. J. Summers, and E. H. Wichmann, “On the connection between quantum fields and von Neumann algebras of local operators,”Commun. Math. Phys. 105, 49–84 (1986).Google Scholar
  15. 15.
    D. Buchholz and E. H. Wichmann, “Causal independence and the energy-level density of states in local quantum field theory,”Commun. Math. Phys. 106, 321–344 (1986).Google Scholar
  16. 16.
    H. Roos, “Independence of local algebras in quantum field theory,”Commun. Math. Phys. 16, 238–246 (1970).Google Scholar
  17. 17.
    H. Ekstein, “Presymmetry II,”Phys. Rev. 184, 1315–1337 (1969); correction inPhys. Rev. D 1, 185(E) (1970).Google Scholar
  18. 18.
    B. De Facio and D. C. Taylor, “Commutativity and causal independence,”Phys. Rev. D 8, 2729–2731 (1973).Google Scholar
  19. 19.
    D. Buchholz, C. D'Antoni, and K. Fredenhagen, “The universal structure of local algebras,”Commun. Math. Phys. 111, 123–135 (1987).Google Scholar
  20. 20.
    W.-D. Garber, “The connexion of duality and causal properties for generalized free fields,”Commun. Math. Phys. 42, 195–208 (1975).Google Scholar
  21. 21.
    H. J. Borchers, “Über die Vollständigkeit lorentzinvarianter Felder in einer zeitartigen Röhre,”Nuovo Cimento 19, 787–793 (1961).Google Scholar
  22. 22.
    H. Araki, “A generalization of Borchers' theorem,”Helv. Phys. Acta 36, 132–139 (1963).Google Scholar
  23. 23.
    S. Stratila and L. Zsido,Lectures on von Neumann algebras (Abacus, Tunbridge Wells, 1979).Google Scholar
  24. 24.
    L. J. Cohen,An Introduction to the Philosophy of Induction and Probability (Oxford University Press, Oxford, 1989).Google Scholar
  25. 25.
    A. Daneri, A. Loinger, and G. M. Prosperi, “Quantum theory of measurement and ergodicity conditions,Nucl. Phys. 33, 297–319 (1962). Reprinted in Ref. 33.Google Scholar
  26. 26.
    K. Hepp, “Quantum theory of measurement and macroscopic observables,”Helv. Phys. Acta 45, 237–248 (1972).Google Scholar
  27. 27.
    B. Whitten-Wolfe and G. G. Emch, “A mechanical quantum measuring process,”Helv. Phys. Acta 49, 45–55 (1976).Google Scholar
  28. 28.
    S. Machida and M. Namiki, “Theory of measurement in quantum mechanics,” I.Prog. Theor. Phys. 63, 1457–1473 (1980); II.Prog. Theor. Phys. 63, 1833–1847 (1980).Google Scholar
  29. 29.
    H. Araki, “A remark on the Machida-Namiki theory of measurement,”Prog. Theor. Phys. 64, 719–730 (1980).Google Scholar
  30. 30.
    H. Araki, “A continuous superselection rule as a model of classical measuring apparatus in quantum mechanics,” inFundamental Aspects of Quantum Theory, V. Gorini and A. Frigerio, eds. (Plenum, New York, 1986), pp. 23–33.Google Scholar
  31. 31.
    W. H. Zurek, “Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?”Phys. Rev. D 24, 1516–1525 (1981).Google Scholar
  32. 32.
    W. H. Zurek, “Environment-induced superselection rules,”Phys. Rev. D 26, 1862–1880 (1982).Google Scholar
  33. 33.
    J. A. Wheeler and W. H. Zurek,Quantum Theory and Measurement (Princeton University Press, Princeton, 1983).Google Scholar
  34. 34.
    I. N. Sanov, “On the probability of large deviations of random variables,”Mat. Sb. 42, 11–44 (1957); translation for the Institute of Mathematical Statistics, published by the American Mathematical Society inSelected Translations in Mathematical Statistics and Probability 1, 213–244 (1961).Google Scholar
  35. 35.
    M. J. Donald, “Free energy and the relative entropy,”J. Stat. Phys. 49, 81–87 (1987).Google Scholar
  36. 36.
    M. Takesaki,Theory of Operator Alegbras, Vol. 1 (Springer, Berlin, 1979).Google Scholar
  37. 37.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis (Academic Press, New York, 1972).Google Scholar
  38. 38.
    H. Araki, “Relative entropy of states of von Neumann algebras,”Publ. Res. Inst. Math. Sci. (Kyoto) 11, 809–833 (1976).Google Scholar
  39. 39.
    H. Umegaki, “Conditional expectation in an operator algebra. IV: Entropy and information,”Kodai Math. Sem. Rep. 14, 59–85 (1962).Google Scholar
  40. 40.
    G. Lindblad, “Expectations and entropy inequalities for finite quantum systems,”Commun. Math. Phys. 39, 111–119 (1974).Google Scholar
  41. 41.
    D. Petz, “Characterization of the relative entropy of states of matrix algebras,” preprint.Google Scholar
  42. 42.
    F. Hiai and D. Petz, “The proper formula for relative entropy and its asymptotics in quantum probability,”Commun. Math. Phys. 143, 99–114 (1991).Google Scholar
  43. 43.
    J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,”IEEE Trans. Inform. Theory 26, 26–37 (1980),Google Scholar
  44. 44.
    J. E. Shore and R. W. Johnson, “Principles of cross-entropy minimization,”IEEE Trans. Inform. Theory 27, 472–482 (1981).Google Scholar
  45. 45.
    H. Araki, “Relative entropy for states of von Neumann algebras, II,”Publ. Res. Inst. Math. Sci. (Kyoto) 13, 173–192 (1977).Google Scholar
  46. 46.
    P. Exner,Open Quantum Systems and Feynman Integrals (Reidel, Dordrecht, 1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Matthew J. Donald
    • 1
  1. 1.The Cavendish LaboratoryCambridgeUnited Kingdom

Personalised recommendations