Foundations of Physics

, Volume 12, Issue 6, pp 607–631 | Cite as

Instead of particles and fields: A micro realistic quantum “smearon” theory

  • Nicholas Maxwell


A fully micro realistic, propensity version of quantum theory is proposed, according to which fundamental physical entities—neither particles nor fields—have physical characteristics which determine probabilistically how they interact with one another (rather than with measuring instruments). The version of quantum “smearon” theory proposed here does not modify the equations of orthodox quantum theory: rather it gives a radically new interpretation to these equations. It is argued that (i) there are strong general reasons for preferrring quantum “smearon” theory to orthodox quantum theory; (ii) the proposed change in physical interpretation leads quantum “smearon” theory to make experimental predictions subtly different from those of orthodox quantum theory. Some possible crucial experiments are considered.


Physical Characteristic Quantum Theory Physical Interpretation Physical Entity Experimental Prediction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Bohr, inAlbert Einstein: Philosopher-Scientist, ed. by P. A. Schilpp (Harper, New York, 1959), p. 209.Google Scholar
  2. 2.
    W. Heisenberg,The Physical Principles of the Quantum Theory (University of Chicago Press, Chicago, 1930).Google Scholar
  3. 3.
    M. Born,Natural Philosophy of Cause and Chance (Oxford University Press, London, 1949).Google Scholar
  4. 4.
    P. A. M. Dirac,The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1930).Google Scholar
  5. 5.
    G. Ludwig,Phys. Blätter 11, 489 (1955).Google Scholar
  6. 6.
    A. Daneri, A. Loinger, and G. M. Prosperi,Nuc. Phys. 33, 297 (1962).Google Scholar
  7. 7.
    E. Bauer and F. London,La Théorie de l'Observation en Mécanique Quantique (Herman & Cie, Paris, 1939).Google Scholar
  8. 8.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton N.J., 1955).Google Scholar
  9. 9.
    E. P. Wigner,Symmetries and Reflections (Camridge, Massachusetts, M.I.T. Press, 1970).Google Scholar
  10. 10.
    K. R. Popper, inQuantum Theory and Reality, ed. by M. Bunge (Springer, New York, 1967).Google Scholar
  11. 11.
    H. Margenau,The Nature of Physical Reality (McGraw-Hill, New York, 1950).Google Scholar
  12. 12.
    A. Landé,New Foundations of Quantum Mechanics (Cambridge University Press, Cambridge, 1965).Google Scholar
  13. 13.
    M. Bunge,Foundations of Physics (Springer, New York, 1967).Google Scholar
  14. 14.
    B. d'Espagnat,The Conceptual Foundations of Physics (Benjamin, California, 1971).Google Scholar
  15. 15.
    L. E. Ballentine,Rev. Mod. Phys. 42, 358 (1970).Google Scholar
  16. 16.
    A. Fine,Brit. J. Phil. Sci. 24, 1 (1973).Google Scholar
  17. 17.
    L. de Broglie,La Physique Quantique Restera-t-elle Indeterministique (Gauther-Villars, Paris, 1953).Google Scholar
  18. 18.
    E. Schrödinger,Die Naturwissenschaften 23, 807, 824, 844 (1935).Google Scholar
  19. 19.
    D. Bohm,Phys. Rev. 85, 166, 180 (1952).Google Scholar
  20. 20.
    D. Bohm and J. P. Vigier,Phys. Rev. 96, 208 (1954).Google Scholar
  21. 21.
    A. Einstein, inLetters on Wave Mechanics ed. by K. Przibram (Vision Press Ltd., London, 1967), p. 39, 31.Google Scholar
  22. 22.
    A. Einstein,The Meaning of Relativity (Chapman and Hall Ltd., London, 1973) p. 157–8.Google Scholar
  23. 23.
    N. Maxwell,Am. J. Phys. 40, 1431 (1972).Google Scholar
  24. 24.
    N. Maxwell,Found. Phys. 6, 275, 661 (1976).Google Scholar
  25. 25.
    D. Bedford and D. Wang,Nuovo Cim. B26, 313 (1975).Google Scholar
  26. 26.
    D. Bedford and D. Wang,Nuovo Cim. B37, 55 (1977).Google Scholar
  27. 27.
    M. Born,Zeit. Phys. 36, 863 (1926).Google Scholar
  28. 28.
    M. J. Klein,Paul Ehrenfest: The Making of a Theoretical Physicist (North-Holland Publishing Co., Amsterdam, 1970), p. 241–5.Google Scholar
  29. 29.
    B. Hoffmann,Albert Einstein: Creater and Rebel (Hart-Davis, MacGibbon Ltd., London, 1972), p. 187.Google Scholar
  30. 30.
    W. Heisenberg,Physics and Philosophy (Allen and Unwin, London, 1958).Google Scholar
  31. 31.
    H. Margenau,Phys. Today 7, 6 (1954).Google Scholar
  32. 32.
    N. Maxwell,Phil. Sci. 41, 123, 247 (1974).Google Scholar
  33. 33.
    N. Maxwell,What's Wrong With Science? (Bran's Head Books Ltd., Middlesex, England, 1976).Google Scholar
  34. 34.
    N. Maxwell,Scientia 114, 629 (1979).Google Scholar
  35. 35.
    M. L. Goldberger and K. M. Watson,Collision Theory (John Wiley and Sons, London, 1964).Google Scholar
  36. 36.
    J. L. Park,Am. J. Phys. 36, 211 (1968).Google Scholar
  37. 37.
    R. Golub and J. M. Pendlebury,Rep. Prog. Phys. 42, 439 (1979).Google Scholar
  38. 38.
    A Fine,Phys. Rev. D2, 2783 (1970).Google Scholar
  39. 39.
    L. Mandel and R. L. Pfleegor,Phys. Rev. 159, 1084 (1967).Google Scholar
  40. 40.
    R. Schlegel,Synthese 21, 65 (1970).Google Scholar
  41. 41.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965), p. 96.Google Scholar
  42. 42.
    K. R. Popper,Conjectures and Refutations (Routledge and Kegan Paul, London, 1963), Ch. 3.Google Scholar
  43. 43.
    R. Harré,Theories and Things (Sheed and Ward, London, 1961).Google Scholar
  44. 44.
    J. J. C. Smart,Philosophy and Scientific Realism (Routledge and Kegan Paul, London, 1963).Google Scholar
  45. 45.
    N. Maxwell,Brit. J. Phil. Sci. 16, 295 (1966) and19, 1 (1968).Google Scholar
  46. 46.
    T. S. Kuhn,The Structure of Scientific Revolutions (University Press, Chicago, 1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Nicholas Maxwell
    • 1
  1. 1.Department of the History and Philosophy of ScienceUniversity College LondonLondonEngland

Personalised recommendations