Glycoconjugate Journal

, Volume 12, Issue 1, pp 77–83 | Cite as

The asparagine-linked carbohydrate of honeybee venom hyaluronidase

  • Viktoria Kubelka
  • Friedrich Altmann
  • Leopold März
Non-Lectin Papers


Hyaluronidase from the venom of the honeybee (Apis mellifera) has been purified by gelpermeation and cation exchange chromatography. Its asparagine-linked carbohydrate chains were released from tryptic glycopeptides with N-glycosidase A and reductively aminated with 2-aminopyridine. Separation of the fluorescent derivatives by size-fractionation and reversed-phase HPLC afforded eighteen fractions which were analysed by two-dimensional HPLC mapping combined with exoglycosidase digestions. The bulk of the N-linked glycans of hyaluronidase consisted of small oligosaccharides (Man1–3GlcNAc2), most of which were either α1,3-monofucosylated or α1,3-(α1,6-)difucosylated at the innermost GlcNAc residue. High-mannose type structures constituted the minor fractions, together making up about 5% of the oligosaccharide pool from hyaluronidase. Four fractions, making up 8% of the N-linked glycans, contained the terminal trisaccharide GalNAcβ1-4[Fucα1-3]GlcNAcβ1- in β1,2-linkage to the core α1,3-mannosyl residue. No evidence for the presence of O-glycans or sialic acids could be found.


hyaluronidase Apis mellifera bee venom N-linked carbohydrate chains α1,3-fucosylation 









phospholipase A2


two-dimensional HPLC


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Habermann E (1972)Science 177:314–22.Google Scholar
  2. 2.
    Kemeny DM, Dalton N, Lawrence AJ, Pearce FL, Vernon CA (1984)Eur J Biochem 139:217–23.Google Scholar
  3. 3.
    Gmachl M, Kreil G (1993)Proc Natl Acad Sci USA 90:3569–73.Google Scholar
  4. 4.
    Kemeny DM, Harries MG, Youlten LJF, Mackenzie-Mills M Lessof MH (1983)J Allergy Clin Immunol 71:505–14.Google Scholar
  5. 5.
    Kubelka V, Altmann F, Staudacher E, Tretter V, März L, Hård K, Kamerling JP, Vliegenthart JFG (1993)Eur J Biochem 213:1193–204.Google Scholar
  6. 6.
    Tretter V, Altmann F, Kubelka V, März L, Becker WM (1993)Int Arch Allergy Immunol 102:259–66.Google Scholar
  7. 7.
    Kubelka V, Altmann F, Kornfeld G, März L (1994)Arch Biochem Biophys 308:148–57.Google Scholar
  8. 8.
    Tomiya N, Awaya J, Kurono M, Endo S, Arata Y, Takahashi N (1988)Anal Biochem 171:73–90.Google Scholar
  9. 9.
    Tolksdorf S, McCready MH, McCullagh DR, Schwenk E (1949)J Lab Clin Med 34:74.Google Scholar
  10. 10.
    Hara S, Takemori Y, Yamaguchi M, Nakamura M, Ohkura Y (1987)Anal Biochem 164:138–45.Google Scholar
  11. 11.
    Altmann F (1992)Anal Biochem 164:138–45.Google Scholar
  12. 12.
    Findley JBC (1990) InProtein Purification Applications. A Practical Approach (Harries ELV, Angal S, eds) pp. 83–90. Oxford: IRL Press.Google Scholar
  13. 13.
    Tretter V, Altmann F, März L (1991)Eur J Biochem 199:647–52.Google Scholar
  14. 14.
    Hase S, Ibuki T, Ikenaka T (1984)J Biochem (Tokyo) 95:197–203.Google Scholar
  15. 15.
    Chan AL, Morris HR, Panico M, Etienne AT, Rogers ME, Gaffney P, Creighton-Kempsford L, Dell A (1991)Glycobiology 1:173–85.Google Scholar
  16. 16.
    Scudder P, Neville DCA, Butters TD, Fleet GWJ, Dwek RA, Rademacher TW, Jacob GS (1990)J Biol Chem 265:16472–77.Google Scholar
  17. 17.
    Altmann F, Kornfeld G, Dalik T, Staudacher E, Glössl J (1993)Glycobiology 3:619–25.Google Scholar
  18. 18.
    Hård K, Van Doorn JM, Thomas-Oates JE, Kamerling JP, Van der Horst DJ (1993)Biochemistry 32:766–75.Google Scholar
  19. 19.
    Yeh J, Seals JR, Murphy CI, van Halbeek H, Cummings RD (1993)Biochemistry 32:11087–99.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Viktoria Kubelka
    • 1
  • Friedrich Altmann
    • 1
  • Leopold März
    • 1
  1. 1.Institut für Chemie der Universität für Bodenkultur WienViennaAustria

Personalised recommendations