Glycoconjugate Journal

, Volume 13, Issue 3, pp 377–384 | Cite as

Gangliosides protect human melanoma cells from ionizing radiation-induced clonogenic cell death

  • C. P. Thomas
  • A. Buronfosse
  • V. Combaret
  • S. Pedron
  • B. Fertil
  • J. Portoukalian
Papers Dedicated To Dr Sen-Itiroh Hakomori


With an experimental model of spontaneous lung metastases of melanoma developed in this laboratory, a range of sublines (variants and clones) with different metastatic potential and ganglioside expression was established from a single human melanoma cell line M4Be. Using anin vitro clonogenic assay and provided that cells were cultured for no more than five passages, variations in cellular radioresistance of M4Be and seven sublines derived from M4Be were detected. This study shows a positive correlation between the cell intrinsic radioresistance of M4Be and its seven sublines and their total ganglioside content. More precisely, the proportion of radioresistant cells in M4Be and the seven sublines correlated with the number of cells determined by flow cytometry that were positively labelled with a monoclonal antibody directed to GD3 disialoganglioside. Blocking the cellular biosynthesis of gangliosides with the inhibitor Fumonisin B1 or cleaving withVibrio cholerae neuraminidase the cell surface ganglioside-bound sialic acid in a radioresistant poorly metastatic subline increased its radiosensitivityin vitro. In contrast, enrichment of a radiosensitive metastatic subline with exogenous bovine brain GM1 increased its radioresistancein vitro. These results suggest that, in the radiation dose range important for radioprotection (0–1 Gy), membrane gangliosides radioprotect human melanoma cellsin vitro.


human melanoma clones spontaneous metastatic potentialin vivo radiosensitivityin vitro gangliosides sialic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grdina DJ, Basic I, Mason KA, Withers HR (1975)Rad Res 63: 483–93.Google Scholar
  2. 2.
    Hill HZ, Hill GJ, Miller CF, Kwong F, Purdy J (1979)Rad Res 80: 259–76.Google Scholar
  3. 3.
    Leith JT, Dexter DL, Dewyngaert JK, Zeman EM, Chu MY, Calabresi P, Glicksman AS (1982)Cancer Res 42: 2556–61.Google Scholar
  4. 4.
    Welch DR, Milas L, Tomasovic SP, Nicolson GL (1983)Cancer Res 43: 6–10.Google Scholar
  5. 5.
    Yang X, Darling JL, McMillan TJ, Peacock JH, Steel GG (1991)Int J Rad Oncol Biol Physics 22: 103–8.Google Scholar
  6. 6.
    Buronfosse A, Thomas CP, Ginestet C, Doré JF (1994)C R Acad Sci Paris 317: 1031–41.Google Scholar
  7. 7.
    Fidler IJ (1973)Nature 242: 148–49.Google Scholar
  8. 8.
    Bailly M, Doré JF (1991)Int J Cancer 49: 750–57.Google Scholar
  9. 9.
    Suit H, Allam A, Allalunis-Turner J, Brock W, Girinsky T, Hill S, Hunter N, Milas L, Pearcey R, Peters L, Welch DR, West C, Efird J (1994)Cancer Res 54: 1736–41.Google Scholar
  10. 10.
    Thomas CP, Buronfosse A, Portoukalian J, Fertil B (1995)Cancer Lett 88: 221–25.Google Scholar
  11. 11.
    Ramakrishnan N, McClain DE, Catravas GN (1993)Int J Rad Biol 63: 693–701.Google Scholar
  12. 12.
    Kono K, Tsuchida T, Kern DH, Irie R (1990)Cancer Invest 8: 161–67.Google Scholar
  13. 13.
    Haimovitz-Freidman A, Kan CC, Ehleiter D, Persaud RS, Mclloughlin M, Fuks Z, Kolesnick RN (1994)J Exp Med 180: 525–35.Google Scholar
  14. 14.
    Zebda N, Pedron S, Rebbaa A, Portoukalian J, Berthier-Vergnes O (1995)FEBS Lett 362: 161–64.Google Scholar
  15. 15.
    Bailly M, Bertrand S, Doré JF (1991)Int J Cancer 49: 457–66.Google Scholar
  16. 16.
    Portoukalian J, Carrel S, Doré JF, Rümke P (1991)Int J Cancer 49: 893–99.Google Scholar
  17. 17.
    Portoukalian J, Bouchon B (1986)J Chromatogr 380: 386–92.Google Scholar
  18. 18.
    Bouchon B, Portoukalian J, Madec AM, Orgiazzi J (1990)Biochim Biophys Acta 1051: 1–5.Google Scholar
  19. 19.
    Jourdian GW, Dean L, Roseman S (1971)J Biol Chem 246: 430–35.Google Scholar
  20. 20.
    Bailly M, Bertrand S, Doré JF (1993)Melanoma Res 3: 51–61.Google Scholar
  21. 21.
    Fertil B, Dertinger H, Courdi A, Malaise EP (1984)Rad Res 99: 73–84.Google Scholar
  22. 22.
    Harel R, Futerman AH (1993)J Biol Chem 268: 14476–81.Google Scholar
  23. 23.
    Manev H, Favaron M, Vicini S, Guidotti A, Costa E (1990)J Pharmcol Exp Ther 252: 419–27.Google Scholar
  24. 24.
    Koike T, Fehsel K, Zielasek J, Kolb H, Burkart V (1993)Immunol Lett 35: 207–12.Google Scholar
  25. 25.
    Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995)J Biol Chem 270: 3074–80.Google Scholar
  26. 26.
    Hakomori SH (1990)J Biol Chem 265: 18713–16.Google Scholar
  27. 27.
    Cheresh DA, Pierschbacher MD, Herzig MA, Mujoo K (1986)J Cell Biol 102: 688–96.Google Scholar
  28. 28.
    Rebbaa A, Bremer E, Portoukalian J (1995)Trends Glycosc Glycotechnol 7: 223–34.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • C. P. Thomas
    • 1
  • A. Buronfosse
    • 1
  • V. Combaret
    • 2
  • S. Pedron
    • 1
  • B. Fertil
    • 3
  • J. Portoukalian
    • 1
  1. 1.Laboratoire de Cancérologie Expérimentale (INSERM ex U. 218) Centre Léon BérardLyonFrance
  2. 2.Laboratoire de Biologie CellulaireCentre Léon BérardLyonFrance
  3. 3.INSERM (U. 66), CHU Pitié SalpétrièreParisFrance

Personalised recommendations