Glycoconjugate Journal

, Volume 11, Issue 6, pp 507–517 | Cite as

The monosaccharide binding site of lentil lectin: an X-ray and molecular modelling study

  • Remy Loris
  • Florence Casset
  • Julie Bouckaert
  • Jurgen Pletinckx
  • Minh-Hoa Dao-Thi
  • Freddy Poortmans
  • Anne Imberty
  • Serge Perez
  • Lode Wyns
Lectin Papers


The X-ray crystal structure of lentil lectin in complex with α-d-glucopyranose has been determined by molecular replacement and refined to anR-value of 0.20 at 3.0 Å resolution. The glucose interacts with the protein in a manner similar to that found in the mannose complexes of concanavalin A, pea lectin and isolectin I fromLathyrus ochrus. The complex is stabilized by a network of hydrogen bonds involving the carbohydrate oxygens O6, O4, O3 and O5. In addition, the α-d-glucopyranose residue makes van der Waals contacts with the protein, involving the phenyl ring of Phe123β. The overall structure of lentil lectin, at this resolution, does not differ significantly from the highly refined structures of the uncomplexed lectin.

Molecular docking studies were performed with mannose and its 2-O and 3-O-m-nitro-benzyl derivatives to explain their high affinity binding. The interactions of the modelled mannose with lentil lectin agree well with those observed experimentally for the protein-carbohydrate complex. The highly flexible Me-2-O-(m-nitro-benzyl)-α-d-mannopyranoside and Me-3-O-(m-nitro-benzyl)-α-d-mannopyranoside become conformationally restricted upon binding to lentil lectin. For best orientations of the two substrates in the combining site, the loss of entropy is accompanied by the formation of a strong hydrogen bond between the nitro group and one amino acid, Gly97β and Asn125β, respectively, along with the establishment of van der Waals interactions between the benzyl group and the aromatic amino acids Tyr100β and Trp128β.


lectin lentil lectin carbohydrate specificity glucose binding mannose binding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Driessche E (1988) InAdvances in Lectin Research (Franz H, ed.) Vol. 1, pp. 73–134. Berlin: VEB Verlag Volk und Gesundheit.Google Scholar
  2. 2.
    Hardman KD, Agarwal RC, Freiser MJ (1982)J Mol Biol 157:69–89.Google Scholar
  3. 3.
    Einspahr H, Parks EH, Suguna K, Subramanian E, Suddath FL (1986)J Biol Chem 261:16518–27.Google Scholar
  4. 4.
    Bourne Y, Abergel C, Cambillau C, Frey M, Rougé P, Fontecilla-Camps JC (1990b)J Mol Biol 214:571–84.Google Scholar
  5. 5.
    Loris R, Steyaert J, Maes D, Lisgarten J, Pickersgill R, Wyns L (1993)Biochemistry 32:8772–81.Google Scholar
  6. 6.
    Shaanan B, Lis H, Sharon N (1991)Science 254:862–66.Google Scholar
  7. 7.
    Delbaere LTJ, Vandonselaar M, Prasad L, Quail JW, Wilson KS, Dauter Z (1993)J Mol Biol 230:950–65.Google Scholar
  8. 8.
    Derewenda Z, Yariv J, Helliwell JR, Kalb AJ, Dodson EJ, Papiz MZ, Wan T, Campbell J (1989)Embo J 8:2189–93.Google Scholar
  9. 9.
    Bourne Y, Roussel S, Frey M, Rougé P, Fontecilla-Camps JC, Cambillau C (1990a)Proteins 8:365–76.Google Scholar
  10. 10.
    Bourne Y, Rougé P, Cambillau C (1990c)J Biol Chem 265:18161–65.Google Scholar
  11. 11.
    Bourne Y, Rougé P, Cambillau C (1992)J Biol Chem 267:197–203.Google Scholar
  12. 12.
    Rini JM, Hardman KD, Einspahr H, Suddath FL, Carver JP (1993)J Biol Chem 268:10126–32.Google Scholar
  13. 13.
    Imberty A, Bourne Y, Cambillau C, Rougé P, Pérez S (1993)Adv Biophys Chem 3:71–118.Google Scholar
  14. 14.
    Lemieux RU (1989)Chem Soc Rev 18:347–74.Google Scholar
  15. 15.
    Quiocho FA (1989)Pure Appl Chem 61:1293–306.Google Scholar
  16. 16.
    Allen AK, Desai NN, Neuberger A (1976)Biochem J 155:127–35.Google Scholar
  17. 17.
    Loganathan D, Osborne SE, Glick GD, Goldstein IJ (1992)Arch Biochem Biophys 299:268–74.Google Scholar
  18. 18.
    Poretz RD, Goldstein IJ (1970)Biochemistry 9:2890–96.Google Scholar
  19. 19.
    Loris R, Lisgarten J, Maes D, Pickersgill R, Körber F, Reynolds C, Wyns L (1992)J Mol Biol 223:579–81.Google Scholar
  20. 20.
    Messerschmidt A, Pflugrath JW (1987)J Appl Cryst 20:306–15.Google Scholar
  21. 21.
    Pflugrath JW, Messerschmidt A (1989)MADNESS Manual of FAST Diffractometer. Delft, The Netherlands: Enraf-Nonius.Google Scholar
  22. 22.
    Fitzgerald PMD (1988)J Appl Cryst 21:273–78.Google Scholar
  23. 23.
    CCP4 (1979) The SERC (UK)Collaborative Computing Project No. 4: A Suite of Programs for Protein Crystallography, distributed from Daresbury Laboratory, Warrington WA 4AD, UKGoogle Scholar
  24. 24.
    Navaza J (1990)Acta Cryst A46:619–20.Google Scholar
  25. 25.
    Castellano EE, Oliva G, Navaza J (1992)J Appl Cryst 25:281–84.Google Scholar
  26. 26.
    Brünger AT (1990)X-PLOR Version 2.1: A System for Crystallography and NMR. New Haven, CT: Yale University.Google Scholar
  27. 27.
    Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993)J Appl Cryst 24:946–50.Google Scholar
  28. 28.
    White DNJ, Guy MHP (1975)J Chem Soc Perkin Trans 2:43–6.Google Scholar
  29. 29.
    Clark M, Cramer RD, Van Opdenbosch N (1989)J Comp Chem 10:982–1012.Google Scholar
  30. 30.
    Imberty A, Hardman KD, Carver JP, Pérez S (1991)Glycobiology 1:631–42.Google Scholar
  31. 31.
    Press WH, Flannery BP, Teukolsky SA and Vetterling WT (1986) InNumerical Recipes, the Art of Scientific Computing. Cambridge: Cambridge University Press.Google Scholar
  32. 32.
    Berthod H, Pullan A (1965)J Chem Phys 62:942–46.Google Scholar
  33. 33.
    Haneef I (1990)J Mol Graph 8:45–51.Google Scholar
  34. 34.
    Mayer D, Naylor CB, Motoc I, Marshall GR (1987)J Comput-Aided Mol Design 1:3–16.Google Scholar
  35. 35.
    Dewar MJS, Thiel W (1977)J Am Chem Soc 99:4899–907.Google Scholar
  36. 36.
    Carver JP, Michnick SW, Imberty A, Cumming DA (1989) InComputer Modelling of Carbohydrate Molecules (Brady JW, French AD eds), ACS Series 430, pp. 266–80. Washington DC: American Chemical Society.Google Scholar
  37. 37.
    Bourne Y, Cambillau C (1993) InWater and Biological Macromolecules (Westho E ed.),Topic Molec Struct Biol 17:321–37.Google Scholar
  38. 38.
    Kollman P (1993)Chem Rev 93:2395–417.Google Scholar
  39. 39.
    Kraulis PJ (1993)J Appl Cryst 24:946–50.Google Scholar
  40. 40.
    Kabsch W, Sander S (1983)Biopolymers 22:2577–637.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Remy Loris
    • 1
  • Florence Casset
    • 2
  • Julie Bouckaert
    • 1
  • Jurgen Pletinckx
    • 1
  • Minh-Hoa Dao-Thi
    • 1
  • Freddy Poortmans
    • 3
  • Anne Imberty
    • 4
  • Serge Perez
    • 2
  • Lode Wyns
    • 1
  1. 1.Laboratorium voor Ultrastructuur, Instituut voor Moleculaire BiologieVrije Universiteit BrusselSint-Genesius-RodeBelgium
  2. 2.Ingenierie Moléculaire, INRANantes cedex 03France
  3. 3.Vlaamse Instelling voor Technologisch Onderzoek—VITOMolBelgium
  4. 4.LSO-CNRS, Faculté des Sciences et TechniquesNantes cedex 03France

Personalised recommendations