Glycoconjugate Journal

, Volume 11, Issue 4, pp 321–332 | Cite as

The monomeric and dimeric mannose-binding proteins from the Orchidaceae speciesListera ovata andEpipactis helleborine: sequence homologies and differences in biological activities

  • Els J. M. van Damme
  • Jan Balzarini
  • Koen Smeets
  • Fred van Leuven
  • Willy J. Peumans
Special Lectins Issue

Abstract

The Orchidaceae speciesListera ovata andEpipactis helleborine contain two types of mannose-binding proteins. Using a combination of affinity chromatography on mannose-Sepharose-4B and ion exchange chromatography on a Mono-S column eight different mannose-binding proteins were isolated from the leaves ofListera ovata. Whereas seven of these mannose-binding proteins have agglutination activity and occur as dimers composed of lectin subunits of 11–13 kDa, the eighth mannose-binding protein is a monomer of 14 kDa devoid of agglutination activity. Moreover, the monomeric mannose-binding protein does not react with an antiserum raised against the dimeric lectin and, in contrast to the lectins, is completely inactive when tested for antiretroviral activity against human immunodeficiency virus type 1 and type 2. Mannose-binding proteins with similar properties were also found in the leaves ofEpipactis helleborine. However, in contrast toListera only one lectin was found inEpipactis. Despite the obvious differences in molecular structure and biological activities molecular cloning of different mannose-binding proteins fromListera andEpipactis has shown that these proteins are related and some parts of the sequences show a high degree of sequence homology indicating that they have been conserved through evolution.

Keywords

cDNA cloning Epipactis lectin Listera mannose-binding 

Abbreviations

EHMBP

Epipactis helleborine mannose-binding protein

LOMBP

Listera ovata mannose-binding protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Damme EJM, Allen AK, Peumans WJ (1987)FEBS Lett 215:140–4.Google Scholar
  2. 2.
    Van Damme EJM, Allen AK, Peumans WJ (1988)Physiol Plant 73:52–7.Google Scholar
  3. 3.
    Van Damme EJM, Goldstein IJ, Peumans WJ (1991)Phytochemistry 30:509–14.Google Scholar
  4. 4.
    Van Damme EJM, Allen AK, Peumans WJ (1987)Plant Physiol 85:566–9.Google Scholar
  5. 5.
    Van Damme EJM, Smeets K, Torrekens S, Van Leuven F, Peumans WJ (1994)Eur J Biochem 221:769–77.Google Scholar
  6. 6.
    Saito K, Komae A, Kakuta M, Van Damme EJM, Peumans WJ, Goldstein IJ, Misaki A (1993)Eur J Biochem 217:677–81.Google Scholar
  7. 7.
    Balzarini J, Schols D, Neyts J, Van Damme E, Peumans W, De Clercq E (1991)Antimicrob Agents Chemother 35:410–16.Google Scholar
  8. 8.
    Balzarini J, Neyts J, Schols D, Hosoya M, Van Damme E, Peumans W, De Clercq E (1992)Antiviral Res 18:191–207.Google Scholar
  9. 9.
    Popovic M, Sarngadharan MG, Read E, Gallo RC (1984)Science 224:497–500.Google Scholar
  10. 10.
    Clavel F, Guétard D, Brun-Vézinet F, Chamaret S, Rey M-A, Santos-Ferreira MO, Laurent AG, Dauget C, Katlama C, Rouzioux C, Klatzmann D, Champalimaud JL, Montagnier L (1986)Science 233:343–46.Google Scholar
  11. 11.
    Bradford MM (1976)Anal. Biochem. 72:248–54.Google Scholar
  12. 12.
    Laemmli UK (1970)Nature 227:680–5.Google Scholar
  13. 13.
    Van Damme EJM, Goldstein IJ, Vercammen G, Vuylsteke J, Peumans WJ (1992)Physiol Plant 86:245–52.Google Scholar
  14. 14.
    Van Damme EJM, Smeets K, Torrekens S, Van Leuven F, Goldstein IJ, Peumans WJ (1992)Eur J Biochem 206:413–20.Google Scholar
  15. 15.
    Balzarini J, Naesens L, Herdewijn P, Rosenberg I, Holy A, Pauwels R, Baba M, Johns DG, De Clercq E (1989)Proc Natl Acad Sci USA 86:332–6.Google Scholar
  16. 16.
    Balzarini J, Naesens L, Slachmuylders J, Niphuis H, Rosenberg I, Holy A, Schellekens H, De Clercq E (1991)AIDS 5:21–8.Google Scholar
  17. 17.
    Finkelstein RR, Crouch ML (1986)Plant Physiol 81:907–12.Google Scholar
  18. 18.
    Siflow CD, Hammett JR, Key JL (1979)Biochemistry 18:2725–31.Google Scholar
  19. 19.
    Wadsworth GJ, Redinbough MG, Scandalios JG (1988)Anal Biochem 172:279–83.Google Scholar
  20. 20.
    Van Damme EJM, Kaku H, Perini F, Goldstein IJ, Peeters B, Yagi F, Decock B, Peumans WJ (1991)Eur J Biochem 202:23–30.Google Scholar
  21. 21.
    Mierendorf RC, Pfeffer D (1987)Meth Enzymol 152:556–62.Google Scholar
  22. 22.
    Sanger F, Nicklen S, Coulson AR (1977)Proc Natl Acad Sci USA 74:5463–67.Google Scholar
  23. 23.
    Maniatis T, Fritsch EF, Sambrook J (1982)Molecular cloning: a laboratory manual. Cold Spring Harbor, New York, USA: Cold Spring Harbor Laboratory.Google Scholar
  24. 24.
    von Heijne G (1986)Nucleic Acids Res 11:4683–90.Google Scholar
  25. 25.
    Barondes SH (1988)TIBS 13:480–2.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Els J. M. van Damme
    • 1
  • Jan Balzarini
    • 2
  • Koen Smeets
    • 1
  • Fred van Leuven
    • 3
  • Willy J. Peumans
    • 1
  1. 1.Laboratory for Phytopathology and Plant ProtectionKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Laboratory of Experimental ChemotherapyRega Institute for Medical ResearchLeuvenBelgium
  3. 3.Center for Human GeneticsKatholieke Universiteit LeuvenBelgium

Personalised recommendations