Glycoconjugate Journal

, Volume 10, Issue 1, pp 109–115 | Cite as

Regulation of biosynthesis ofN-glycolylneuraminic acid-containing glycoconjugates: characterization of factors required for NADH-dependent cytidine 5′monophosphate-N-acetylneuraminic acid hydroxylation

  • Takehiro Kawano
  • Yasunori Kozutsumi
  • Hiromu Takematsu
  • Toshisuke Kawasaki
  • Akemi Suzuki


The hydroxylation of CMP-NeuAc has been demonstrated to be carried out by several factors including the soluble form of cytochromeb5. In the present study, mouse liver cytosol was subjected to ammonium sulfate fractionation and cellulose phosphate column chromatography for the separation of two other essential fractions participating in the hydroxylation. One of the fractions, which bound to a cellulose phosphate column, was able to reduce the soluble cytochromeb5, using NADH as an electron donor. The other fraction, which flowed through the column, was assumed to contain the terminal enzyme which accepts electrons from cytochromeb5, activates oxygen, and catalyses the hydroxylation of CMP-NeuAc. Assay conditions for the quantitative determination of the terminal enzyme were established, and the activity of the enzyme in several tissues of mouse and rat was measured. The level of the terminal enzyme activity is associated with the expression ofN-glycolylneuraminic acid in these tissues, indicating that the expression of the terminal enzyme possibly regulates the overall velocity of CMP-NeuAc hydroxylation.


CMP-NeuAc hydroxylase N-glycolylneuraminic acid H-D antigen cytochromeb5 



cytidine 5′-monophosphate


N-acetylneuraminic acid


N-glycolylneuraminic acid


reduced nicotinamide adenine dinucleotide


reduced nicotinamide adenine dinucleotide phosphate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schauer R (1982)Sialic Acids: Chemistry, Metabolism and Function New York: Springer-Verlag.Google Scholar
  2. 2.
    Landmesser L, Dahm L, Tang JC, Rutishauser U (1990)Neuron 4:655–67.Google Scholar
  3. 3.
    Larsen GR, Sako D, Ahern TJ, Shaffer M, Erban J, Sajer SA, Gibson RM, Wagner DD, Furie BC, Furie B (1992)J Biol Chem 267:11104–10.Google Scholar
  4. 4.
    Kawano T, Takasaki S, Tao TW, Kobata A (1991)Glycobiology 1:375–85.Google Scholar
  5. 5.
    Suzuki Y, Nagao Y, Kato H, Suzuki T, Matsumoto M, Murayama J (1987)Biochim Biophys Acta 903:417–24.Google Scholar
  6. 6.
    Ashwell G, Harford J (1982)Ann Rev Biochem. 51:531–54.Google Scholar
  7. 7.
    Varki A (1992)Glycobiology 2:25–40.Google Scholar
  8. 8.
    Nakamura K, Hashimoto Y, Yamakawa T, Suzuki A (1988)J Biochem (Tokyo)103:201–8.Google Scholar
  9. 9.
    Hamanaka S, Handa S, Inoue J, Hasegawa A, Yamakawa T (1979)J Biochem (Tokyo)86:695–98.Google Scholar
  10. 10.
    Hashimoto Y, Sakaizumi M, Nakamura Y, Moriwaki K, Yamakawa T, Suzuki A (1989)J Biochem (Tokyo)106:319–22.Google Scholar
  11. 11.
    Kawai T, Kato A, Higashi H, Kato S, Naiki M (1991)Cancer Res 51:1242–46.Google Scholar
  12. 12.
    Bouhours JF, Bouhours D, Hansson GC (1987)J Biol. Chem 262:16370–75.Google Scholar
  13. 13.
    Shaw L, Schauer R (1988)Biol Chem Hoppe Seyler 369:477–86.Google Scholar
  14. 14.
    Bouhours JF, Bouhours D (1989)J Biol Chem 264:16992–99.Google Scholar
  15. 15.
    Lepers A, Shaw L, Schneckenburger P, Cacan R, Verbert A, Schauer R (1990)Eur J Biochem 193:715–23.Google Scholar
  16. 16.
    Shaw L, Schauer R (1989)Biochem J 263:355–63.Google Scholar
  17. 17.
    Kozutsumi Y, Kawano T, Yamakawa T, Suzuki A (1990)J Biochem (Tokyo)108:704–6.Google Scholar
  18. 18.
    Kozutsumi Y, Kawano T, Kawasaki H, Suzuki K, Yamakawa T, Suzuki A (1991)J Biochem (Tokyo)110:429–35.Google Scholar
  19. 19.
    Shaw L, Schneckenburger P, Carlsen J, Christiansen K, Schauer R (1992)Eur J Biochem 206:269–77.Google Scholar
  20. 20.
    Iwamori M, Nagai Y (1978)Biochim Biophys Acta 528:257–67.Google Scholar
  21. 21.
    Passon PG, Hultquist DE (1972)Biochim Biophys Acta 275:62–73.Google Scholar
  22. 22.
    Tamura M, Yubisui T, Takeshita M (1983)J Biochem (Tokyo)94:1547–55.Google Scholar
  23. 23.
    Yubisui T, Takeshita M (1980)J Biol Chem. 255:2454–56.Google Scholar
  24. 24.
    Muchmore EA (1992)Glycobiology 2:337–43.Google Scholar
  25. 25.
    Kitajima K, Inoue S, Inoue Y, Troy FA (1988)J Biol Chem 263:18269–76.Google Scholar
  26. 26.
    Nelson DR, Strobel HW (1989)Biochemistry 28:656–60.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Takehiro Kawano
    • 1
  • Yasunori Kozutsumi
    • 2
  • Hiromu Takematsu
    • 2
  • Toshisuke Kawasaki
    • 2
  • Akemi Suzuki
    • 1
  1. 1.Department of Membrane BiochemistryTokyo Metropolitan Institute of Medical ScienceTokyoJapan
  2. 2.Department of Biological Chemistry, Faculty of Pharmaceutical SciencesKyoto UniversityKyotoJapan

Personalised recommendations