Glycoconjugate Journal

, Volume 8, Issue 2, pp 75–81 | Cite as

Expedient syntheses of neoglycoproteins using phase transfer catalysis and reductive amination as key reactions

  • René Roy
  • François D. Tropper
  • Anna Romanowska
  • Marie Letellier
  • Luc Cousineau
  • Serge J. Meunier
  • Janusz Boratyński


Starting from peracetylated chloro- or bromo-glycosyl donors ofN-acetylneurmainic acid,N-acetylglucosamine, glucose and lactose, the correspondingp-formylphenyl glycosides were synthesized stereospecifically under phase transfer catalysed conditions at room temperature in yields of 38–67%. After Zemplén de-O-acetylation, the formyl groups were directly and chemoselectively coupled to the lysine residues of bovine serum albumin by reductive amination using sodium cyanoborohydride. The conjugation reactions were followed as a function of time and under a series of different molar ratios of the reactants to provide glycoconjugates of varying degree of antigenicities. Thus, carbohydrate protein conjugates were made readily available using essentially two key reactions.


sialic acid glycoconjugate phase transfer catalysis reductive amination aryl glycosides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stowel CP, Lee YC (1970)Adv Carbohydr Chem Biochem 37:225–81.Google Scholar
  2. 2.
    Aplin JD, Wriston JC Jr (1981)CRC Crit Rev Biochem 10:259–306.Google Scholar
  3. 3.
    Westphal O, Feier H (1956)Chem Ber 89:582–8.Google Scholar
  4. 4.
    Zopf DA, Smith DF, Drzeniek Z, Tsai CM, Ginsburg V (1978)Methods Enzymol 50:171–5.Google Scholar
  5. 5.
    Svenson SB, Lindberg AA (1979)J Immunol Methods 25: 323–35.Google Scholar
  6. 6.
    Gray GR (1974)Arch Biochem Biophys 163:426–8.Google Scholar
  7. 7.
    Roy R, Katzenellenbogen E, Jennings HJ (1984)Can J Biochem Cell Biol 62:270–5.Google Scholar
  8. 8.
    Roy R, Laferrière CA (1990)Can J Chem 68:2045–54.Google Scholar
  9. 9.
    Roy R, Laferrière CA, Gamian A, Jennings HJ (1987)J Carbohydr Chem 6:161–5.Google Scholar
  10. 10.
    Roy R, Tropper FD (1990)Synthetic Commun 20:2097–102.Google Scholar
  11. 11.
    Dess D, Kleine HP, Weinberg DV, Kaufman RJ, Sidhu RS (1981)Synthesis 883–5.Google Scholar
  12. 12.
    Bogusiak J, Szeja W (1985)Polish J Chem 59:693–8.Google Scholar
  13. 13.
    Brewster K, Harrison JM, Inch TD (1979)Tetrahedron Lett 5051–4.Google Scholar
  14. 14.
    Rothermel J, Faillard H (1990)Carbohydr Res 196:29–40.Google Scholar
  15. 15.
    Kunz H, Waldmann H, März J (1989)Liebigs Ann Chem 45–9.Google Scholar
  16. 16.
    Paulsen H, Tietz H (1985)Carbohydr Res 144:205–29.Google Scholar
  17. 17.
    Itoh Y, Ogawa T (1987)Tetrahedron Lett 28:6221–4Google Scholar
  18. 18.
    Svennerholm L (1957)Biochim Biophys Acta 24:601–11.Google Scholar
  19. 19.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956)Anal Chem 28:350–6.Google Scholar
  20. 20.
    Reissig JL, Strominger JL, Leloir LF (1977)J Biol Chem 217:959–66.Google Scholar
  21. 21.
    Perrin DD, Armarego WL, Perrin DR (1980) InPurification of Laboratory Compounds, 2nd Ed. London: Pergamon.Google Scholar
  22. 22.
    Ferrier RJ, Sankey GH (1966)J Chem Soc C: 2339–45.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • René Roy
    • 1
  • François D. Tropper
    • 1
  • Anna Romanowska
    • 1
  • Marie Letellier
    • 1
  • Luc Cousineau
    • 1
  • Serge J. Meunier
    • 1
  • Janusz Boratyński
    • 1
  1. 1.Department of ChemistryUniversity of OttawaOttawaCanada

Personalised recommendations