Foundations of Physics

, Volume 14, Issue 3, pp 255–274

Measurement understood through the quantum potential approach

  • D. Bohm
  • B. J. Hiley
Article

Abstract

We review briefly the quantum potential approach to quantum theory, and show that it yields a completely consistent account of the measurement process, including especially what has been called the “collapse of the wave function.” This is done with the aid of a new concept of active information, which enables us to describe the evolution of a physical system as a unique actuality, in principle independent of any observer (so that we can, for example, provide a simple and coherent answer to the Schrödinger cat paradox). Finally, we extend this approach to relativistic quantum field theories, and show that it leads to results that are consistent with all the known experimental implications of the theory of relativity, despite the nonlocality which this approach entails.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bohm,Phys. Rev. 85, 166 (1952).Google Scholar
  2. 2.
    D. Bohm,Phys. Rev. 85, 180 (1952).Google Scholar
  3. 3.
    D. Bohm and J.-P. Vigier,Phys. Rev. 96, 208 (1954).Google Scholar
  4. 4.
    C. Philippidis, D. Bohm, and R. D. Kaye,Nuovo Cimento B 71, 75 (1982).Google Scholar
  5. 5.
    C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento B 52, 15 (1979).Google Scholar
  6. 6.
    C. Dewdney and B. J. Hiley,Found. Phys. 12, 27 (1982).Google Scholar
  7. 7.
    L. de Broglie,Une tentative d'interprétation causale et non linéaire de la mécanique ondulatoire: la théorie de la double solution (Gauthier-Villars, Paris, 1956).Google Scholar
  8. 8.
    D. Bohm and B. J. Hiley,Found. Phys. 5, 93 (1975).Google Scholar
  9. 9.
    N. Bohr,Atomic Physics and Human Knowledge (Science Editions, New York, 1961).Google Scholar
  10. 10.
    E. Wigner,The Scientist Speculates, I. J. Good, ed. (Putnam, New York, 1965).Google Scholar
  11. 11.
    H. Everett,Rev. Mod. Phys. 29, 454 (1957).Google Scholar
  12. 12.
    J. S. Bell, CERN Preprint TH1424 (1971).Google Scholar
  13. 13.
    A. Aspect, J. Dalibard, and C. Roger,Phys. Rev. Lett. 49, 1804 (1982).Google Scholar
  14. 14.
    D. Bohm and B. J. Hiley,Found. Phys. 12, 1001 (1982).Google Scholar
  15. 15.
    E. Madelung,Z. Phys. 40, 332 (1926).Google Scholar
  16. 16.
    A. Baracca, D. Bohm, B. J. Hiley, and A. E. G. Stuart,Nuovo Cimento B 28, 453 (1975).Google Scholar
  17. 17.
    D. Bohm, R. Shiller, and J. Tiomno,Nuovo Cimento (Suppl.)1 48 (1955).Google Scholar
  18. 18.
    D. Bohm,Quantum Theory (Prentice-Hall, New Jersey, 1960), Chapter 22.Google Scholar
  19. 19.
    A. Daneri, A. Loinger, and G. M. Prosperi,Nucl. Phys. 44, 297 (1962);Nuovo Cimento B 44, 119 (1966).Google Scholar
  20. 20.
    D. Bohm,Quantum Theory (Prentice-Hall, New Jersey, 1960), Chapter 8.Google Scholar
  21. 21.
    I. Prigogine,From Being to Becoming (Freeman, San Francisco, 1980).Google Scholar
  22. 22.
    R. L. Pfleegor and L. Mandel,Phys. Rev. 159, 1084 (1967);J. Opt. Soc. Amer. 58, 946 (1968).Google Scholar
  23. 23.
    P. A. M. Dirac,Nature (London)168, 906 (1951).Google Scholar
  24. 24.
    B. S. de Witt,General Relativity: An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • D. Bohm
    • 1
  • B. J. Hiley
    • 1
  1. 1.Birkbeck CollegeUniversity of LondonLondonEngland

Personalised recommendations