Advertisement

Foundations of Physics

, Volume 14, Issue 2, pp 155–170 | Cite as

A resolution of the classical wave-particle problem

  • J. P. Wesley
Article

Abstract

The classical wave-particle problem is resolved in accord with Newton's concept of the particle nature of light by associating particle density and flux with the classical wave energy density and flux. Point particles flowing along discrete trajectories yield interference and diffraction patterns, as illustrated by Young's double pinhole interference. Bound particle motion is prescribed by standing waves. Particle motion as a function of time is presented for the case of a “particle in a box.” Initial conditions uniquely determine the subsequent motion. Some discussion regarding quantum theory is preseted.

Keywords

Energy Density Diffraction Pattern Quantum Theory Particle Density Wave Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Newton,Opticks, or Treatise of Reflections, Refractions, Inflections and Colours of Light, 4th edn. London, 1730 (Dover, New York, 1952; a reprint of the 1931 edition of G. Bell and Sons).Google Scholar
  2. 2.
    Th. Young,Philos. Trans. R. Soc. London, pp. 12, 387 (1802); p. 1 (1804).Google Scholar
  3. 3.
    A. Fresnel,Mem. Acad. Sci. 5, 339 (1826).Google Scholar
  4. 4.
    W. R. Hamilton,Philos. Trans. R. Soc. London, p. 307 (1834).Google Scholar
  5. 5.
    Maupertuis,Mem. Acad. Paris, p. 417 (1744).Google Scholar
  6. 6.
    M. Planck,Verh. Dtsch. Phys. Ges. 2, 202, 237 (1900).Google Scholar
  7. 7.
    A. Einstein,Ann. Phys. (Leipzig) 17, 132 (1905).Google Scholar
  8. 8.
    L. de Broglie,Compt. Rend. 177, 507 548 (1923);179, 39, 676 (1924);Philos. Mag. 47, 446 (1924);Ann. Phys. (Paris) 3, 22 (1924).Google Scholar
  9. 9.
    E. Schrödinger,Ann. Phys. (Leipzig) 79, 361, 489 (1926);80, 437 (1926);81, 109 (1926).Google Scholar
  10. 10.
    E. Madelung,Z. Phys. 40, 322 (1926).Google Scholar
  11. 11.
    L. de Broglie,Compt. Rend. 183, 447 (1926);184, 273 (1927);185, 380 (1927);J. Phys. (Paris) 8, 225 (1927);Nonlinear Wave Mechanics (Elsevier, Amsterdam, 1960).Google Scholar
  12. 12.
    D. Bohm,Phys. Rev. 85, 166, 180 (1952);Prog. Theor. Phys. 9, 273 (1953);Causality and Chance in Modern Physics (Princeton University Press, Princeton, New Jersey, 1957).Google Scholar
  13. 13.
    J. P. Wesley,Phys. Rev. 122, 1932 (1961).Google Scholar
  14. 14.
    J. P. Wesley,Nuovo Cimento 37, 989 (1965).Google Scholar
  15. 15.
    R. D. Prosser,Int. J. Theor. Phys. 15, 169 (1976).Google Scholar
  16. 16.
    R. D. Prosser,Int. J. Theor. Phys. 15, 181 (1976).Google Scholar
  17. 17.
    C. Philippidis, C. Dewdney, and B. J. Hiley,Nuovo Cimento B 52, 15 (1979).Google Scholar
  18. 18.
    J. O. Hirschfelder and A. C. Christoph,J. Chem. Phys. 61, 5435 (1974).Google Scholar
  19. 19.
    C. Dewdney and B. J. Hiley,Found. Phys. 12, 27 (1982).Google Scholar
  20. 20.
    J. P. Wesley,Causal Quantum Theory (Benjamin Wesley, 7712 Blumberg, West Germany, 1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • J. P. Wesley
    • 1
  1. 1.BlumbergWest Germany

Personalised recommendations