Advertisement

Molecular and General Genetics MGG

, Volume 186, Issue 3, pp 339–346 | Cite as

Nucleotide sequences that signal the initiation of transcription and translation inBacillus subtilis

  • Charles P. MoranJr.
  • Naomi Lang
  • Stuart F. J. LeGrice
  • Gloria Lee
  • Michael Stephens
  • A. L. Sonenshein
  • Janice Pero
  • Richard Losick
Article

Summary

We have determined the nucleotide sequence of twoBacillus subtilis promoters (veg andtms) that are utilized by the principal form ofB. subtilis RNA polymerase found in vegetative cells (σ55-RNA polymerase) and have compared our sequences to those of several previously reportedBacillus promoters. Hexanucleotide sequences centered approximately 35 (the “-35” region) and 10 (the “-10” region) base pairs upstream from theveg andtms transcription startpoints (and separated by 17 base pairs) corresponded closely to the consensus hexanucleotides (TTGACA and TATAAT) attributed toEscherichia coli promoters. Conformity to the preferred -35 and -10 sequences may not be sufficient to promote efficient utilization byB. subtilis RNA polymerase, however, since three promoters (veg, tms andE. coli tac) that conform to these sequences and that are utilized efficiently byE. coli RNA polymerase were used with highly varied efficiencies byB. subtilis RNA polymerase.

We have also analyzed mRNA sequences in DNA located downstream from eightB. subtilis chromosomal and phage promoters for nucleotide sequences that might signal the initiation of translation. In accordance with the rules of McLaughlin, Murray and Rabinowitz (1981), we observe mRNA nucleotide sequences with extensive complementarity to the 3′ terminal region ofB. subtilis 16S rRNA, followed by an initiation codon and an open reading frame.

Keywords

Nucleotide Sequence Initiation Codon Varied Efficiency Principal Form Coli Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achberger EC, Whiteley HR (1981) The role of the δ peptide of theBacillus subtilis RNA polymerase in promoter selection. J Biol Chem 256:7424–7432Google Scholar
  2. Berkner KL, Folk WR (1977) Polynucleotide kinase exchange reaction: quantitative assay for restriction endonuclease-generated 5′-phosphoryl termini in DNAs. J Biol Chem 252:3176–3184Google Scholar
  3. Cohen SN, Chang ACY, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmidsin vitro. Proc Natl Acad Sci USA 70:3240–3244Google Scholar
  4. Donnelly CE, Sonenshein AL (1982) Genetic fusion ofEscherichia coli lac genes to aBacillus subtilis promoter. In: Ganeson A, Hoch J, Chang S (eds) Molecular cloning and gene regulation inBacilli. Academic Press, New York, in pressGoogle Scholar
  5. Donis-Keller H (1979) Site specific cleavage of RNA. Nucl Acids Res 7:179–192Google Scholar
  6. Ehrlich SD (1978) DNA cloning inBacillus subtilis. Proc Natl Acad Sci USA 75:1433–1436Google Scholar
  7. Haldenwang WG, Banner CDB, Ollington JF, Losick R, Hoch JA, O'Connor MB, Sonenshein AL (1980) Mapping a cloned gene under sporulation control by insertion of a drug-resistance marker into theBacillus subtilis chromosome. J Bacteriol 142:90–98Google Scholar
  8. Haldenwang WG, Losick R (1980) A novel RNA polymerase sigma factor fromBacillus subtilis. Proc Natl Acad Sci USA 77:7000–7004Google Scholar
  9. Hoffman DJ, Niyogi SK (1973) RNA initiation with dinucleoside monophosphates during transcription of bacteriophage T4 DNA with RNA polymerase ofEscherichia coli. Proc Natl Acad Sci USA 70:574–578Google Scholar
  10. Kreft J, Bernhard K, Goebel W (1978) Recombinant plasmids capable of replication inB. subtilis andE. coli. Mol Gen Genet 162:59–67Google Scholar
  11. Klenow H, Henningson I (1970) Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase fromEscherichia coli B by limited proteolysis. Proc Natl Acad Sci USA 65:168–175Google Scholar
  12. Kroyer J, Chang S (1981) The promoter-proximal region of theBacillus licheniformis penicillinase gene: Nucleotide sequence and predicted leader peptide sequence. Gene 15:343–347Google Scholar
  13. Lee G, Hannett NM, Korman A, Pero J (1980) Transcription of cloned DNA fromBacillus subtilis phage SP01: requirement for hydroxymethyluracil-containing DNA by phage-modified RNA polymerase. J Mol Biol 139:407–422Google Scholar
  14. Lee G, Pero J (1981) Conserved nucleotide sequences in temporally-controlled phage promoters. J Mol Biol 152:247–265Google Scholar
  15. Lee G, Talkington C, Pero J (1980) Nucleotide sequences of a promoter recognized byBacillus subtilis RNA polymerase. Mol Gen Genet 180:57–65Google Scholar
  16. Legault-Demare L, Chambliss GH (1975) Selective messenger translation ofBacillus subtilis ribosomes. Mol Gen Genet 142:277–287Google Scholar
  17. Losick R, Pero J (1981) Cascades of sigma factors. Cell 25:582–584Google Scholar
  18. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base specific chemical cleavages. Meth Enzymol 65:499–559Google Scholar
  19. McLaughlin JR, Murray CL, Rabinowitz JC (1981) Unique features in the ribosome binding site sequence of the Gram-positiveStaphylococcus aureus β-lactamase gene. J Biol Chem 256:11283–11291Google Scholar
  20. Minkley EG, Pribnow D (1973) Transcription of the early region of bacteriophage T7: selective initiation with dinucleotides. J Mol Biol 77:255–277Google Scholar
  21. Moran CP Jr, Lang N, Banner CDB, Haldenwang WG, Losick R (1981) Promoter for a developmentally-regulated gene inBacillus subtilis. Cell 25:783–791Google Scholar
  22. Moran CP Jr, Lang N, Losick R (1981) Nucleotide sequence of aBacillus subtilis promoter recognized byBacillus subtilis RNA polymerase containing σ37. Nucl Acids Res 9:5979–5990Google Scholar
  23. Murray CL, Rabinowitz JC (1982) Nucleotide sequences of transcription and translation initiation regions inBacillus phage ϕ29 early genes. J Biol Chem 257:1053–1062Google Scholar
  24. Neugebauer K, Sprengel R, Schiller H (1981) Penicillinase fromBacillus licheniformas: nucleotide sequence of the gene and implications for the biosynthesis of a secretory protein in a Grampositive bacterium. Nucl Acids Res 9:2577–2588Google Scholar
  25. Ollington JF, Losick R (1981) A cloned gene that is turned on at an intermediate stage of spore formation inBacillus subtilis. J Bacteriol 147:443–451Google Scholar
  26. Ollington JF, Haldenwang WG, Huynh TV, Losick R (1981) Developmentally-regulated transcription in a cloned segment of theBacillus subtilis chromosome. J Bacteriol 147:432–442Google Scholar
  27. Palva I, Pettersson RF, Kalkkinen N, Lehtovaara P, Sarvas M, Soderlund H, Takkinen K, Kaariainen L (1981) Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the α-amylase gene fromBacillus amyloliquefaciens. Gene 15:43–51Google Scholar
  28. Pero J, Nelson J, Fox TD (1975) Highly asymmetric transcription by RNA polymerase containing phage-SP01-induced polypeptides and a new host protein. Proc Natl Acad Sci USA 72:1589–1593Google Scholar
  29. Ratzkin B, Carbon J (1977) Functional expression of cloned yeast DNA inEscherichia coli. Proc Natl Acad Sci USA 74:487–491Google Scholar
  30. Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of transcription. Annu Rev Genet 13:319–353Google Scholar
  31. Shorenstein RG, Losick R (1973) Comparative size and properties of the sigma subunits of RNA polymerase fromBacillus subtilis andEscherichia coli. J Biol Chem 248:6170–6173Google Scholar
  32. Siebenlist U, Simpson RB, Gilbert W (1980)E. coli RNA polymerase interacts homologously with two different promoters. Cell 20:269–281Google Scholar
  33. Stallcup MR, Rabinowitz JC (1973) Initiation of protein synthesisin vitro by a clostridial system. J Biol Chem 248:3209–3215; 3216–3219Google Scholar
  34. Struhl K, Cameron JR, Davis RW (1976) Functional genetic expression of enkaryotic DNA inEscherichia coli. Proc Natl Acad Sci USA 73:1471–1475Google Scholar
  35. Tinoco I, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246:40–41Google Scholar
  36. Tjian R, Losick R, Pero J, Hinnebush A (1977) Pruification and comparative properties of the delta and sigma subunits of RNA polymerase fromBacillus subtilis. Eur Journal Biochem 74:149–154Google Scholar
  37. Wiggs JL, Bush JW, Chamberlin MJ (1979) Utilization of promoter and terminator sites on bacteriophage T7 DNA by RNA polymerases from a variety of bacterial orders. Cell 16:97–109Google Scholar
  38. Yago Y, McLellan T, Frez W, Clewell D (1978) Antimicrobial agents and chemotherapy 13:884–887Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Charles P. MoranJr.
    • 1
    • 2
  • Naomi Lang
    • 1
    • 2
  • Stuart F. J. LeGrice
    • 1
    • 2
  • Gloria Lee
    • 1
    • 2
  • Michael Stephens
    • 1
    • 2
  • A. L. Sonenshein
    • 1
    • 2
  • Janice Pero
    • 1
    • 2
  • Richard Losick
    • 1
    • 2
  1. 1.Department of Cellular and Developmental Biology, The Biological LaboratoriesHarvard UniversityCambridgeUSA
  2. 2.The Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonUSA

Personalised recommendations