Journal of Superconductivity

, Volume 7, Issue 3, pp 525–530 | Cite as

Correlation effects and BCS physics in high-T c superconductors

  • G. M. Eliashberg
XVI. High Tc Oxides: Theory


Available experimental data undoubtedly show that the gross features of BCS physics manifest themselves in all known high-T c superconductors. It seems also that the strong-coupling version of BCS theory provides a reliable description of the superconductivity at least in some of these materials. On the other hand, the lack of correlation effects even in the language of the mentioned approach excludes the possibility of discussing in this framework a physical aspect of the problem: “Why is theT c high?” A necessary extension of the Fermi-liquid phenomenology based on the Luttinger-Ward (LW) sum rule is proposed, and it is shown that there exists a very natural measure of correlations which allows one to specify the correlated state favorable for superconductivity. This state is essentially metallic with respect to its low-energy excitation spectrum and, moreover, the residual Coulomb interaction is suppressed. The electron-phonon interaction not only survives, but can be sufficiently strong to provide highT c . The LW sum rule fails in the superconducting state, which imposes a certain restriction on the possibility of using the BCS physics.


Spectroscopy Experimental Data State Physics Excitation Spectrum Coulomb Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Bednorz and K. A. Müller,Z. Phys. B 64, 189 (1986).Google Scholar
  2. 2.
    A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott,Nature (London) 363, 56 (1993).Google Scholar
  3. 3.
    R. J. Cavaet al., Nature (London) 332, 814 (1988).Google Scholar
  4. 4.
    K. Holczer,Int. J. Mod. Phys. B 6, 3967 (1992).Google Scholar
  5. 5.
    H. R. Krishnamurthy and A. K. Sood,Rev. Solid State Sci. 5, 587 (1991).Google Scholar
  6. 6.
    J. C. Phillips,Physics of High-T c Superconductors (Academic Press, San Diego, 1989).Google Scholar
  7. 7.
    Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, and Y. Iye,Phys. Rev. Lett. 70, 2126 (1993).Google Scholar
  8. 8.
    N. F. Mott,Proc. Phys. Soc. 62, 416 (1949);Philos. Mag. 6, 287 (1961).Google Scholar
  9. 9.
    J. M. Luttinger and J. C. Ward,Phys. Rev. 118, 1417 (1960); J. M. Luttinger,Phys. Rev. 119, 1153 (1960).Google Scholar
  10. 10.
    W. F. Brinkman and T. M. Rice,Phys. Rev. B 2, 4302 (1970).Google Scholar
  11. 11.
    P. W. Anderson,Phys. Rev. Lett. 64, 1839 (1990).Google Scholar
  12. 12.
    A. A. Abrikosov,J. Exp. Theor. Phys. (USSR) 43, 1083 (1962);Sov. Phys. JETP 16, 765 (1963).Google Scholar
  13. 13.
    G. M. Eliashberg inElectronic Properties of High-T c Superconductors, H. Kuzmany, M. Mehring, and J. Fink, eds., Springer Series in Solid State Science, Vol. 113 (Springer-Verlag, Berlin, 1993), p. 385.Google Scholar
  14. 14.
    A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii,Quantum Field Theoretical Methods in Statistical Physics (Pergamon Press, Oxford, 1965).Google Scholar
  15. 15.
    L. D. Landau,J. Exp. Theor. Phys. (USSR) 30, 1058 (1956);Sov. Phys. JETP 3, 920 (1957).Google Scholar
  16. 16.
    D. S. Greywall,Phys. Rev. B 27, 2747 (1983).Google Scholar
  17. 17.
    K. Seiler, C. Gros, T. M. Rice, K. Ueda, and D. Vollhardt,J. Low Temp. Phys. 64, 195 (1986).Google Scholar
  18. 18.
    A. B. Migdal,J. Exp. Theor. Phys. (USSR) 34, 1438 (1958);Sov. Phys. JETP 7, 996 (1958).Google Scholar
  19. 19.
    A. Fujimori, I. Hase, H. Namatame, Y. Fujishima, Y. Tokura, H. Eisaki, S. Uchida, K. Takgahara, and F. M. F. de Groot,Phys. Rev. Lett. 69, 1796 (1992).Google Scholar
  20. 20.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer,Phys. Rev. 108, 1175 (1957).Google Scholar
  21. 21.
    I. Giaever,Phys. Rev. Lett. 5, 147 (1960).Google Scholar
  22. 22.
    W. L. McMillan and J. M. Rowell, inSuperconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969), Vol. 1.Chap. 11.Google Scholar
  23. 23.
    L. Y. L. Shen,Phys. Rev. Lett. 29, 1082 (1972).Google Scholar
  24. 24.
    Q. Huang, J. F. Zasadzinski, N. Tralshawala, K. E. Gray, D. G. Hinks, Y. L. Peng, and R. L. Greene,Nature (London) 347, 369 (1990).Google Scholar
  25. 25.
    Zhe Zhang, Cia-Chun Chen, Stephen P. Kelty, Jongjie Dai, and Charles M. Lieber,Nature (London) 353, 333 (1991).Google Scholar
  26. 26.
    S. I. Vedeneev, P. Samuely, S. V. Meshkov, G. M. Eliashberg, A. G. M. Jansen, and P. Wyder,Physica C 198, 47 (1992).Google Scholar
  27. 27.
    D. Mandrus, L. Forro, D. Koller, and L. Mihaly,Nature (London) 351, 460 (1991).Google Scholar
  28. 28.
    Zhe Zhang and Charles M. Lieber,Phys. Rev. 47, 3423 (1993).Google Scholar
  29. 29.
    L. P. Gor'kov,J. Exp. Theor. Phys. (USSR) 34, 735 (1958);Sov. Phys. JETP 7, 505 (1958).Google Scholar
  30. 30.
    Y. Nambu,Phys. Rev. 177, 648 (1960).Google Scholar
  31. 31.
    G. M. Eliashberg,J. Exp. Theor. Phys. (USSR) 38, 966 (1960);39, 1437 (1960);Sov. Phys. JETP 11, 696 (1960);12, 1000 (1961).Google Scholar
  32. 32.
    G. M. Eliashberg,J. Exp. Theor. Phys. (USSR) 43, 1005 (1962);Sov. Phys. JETP 16, 780 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • G. M. Eliashberg
    • 1
  1. 1.Institut für Theoretische Physik CTechnische Hochschule AachenAachenGermany

Personalised recommendations